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ABSTRACT 

ABSTRACT OF THESIS 

 

FOURIER TRANSFORM INFRARED SPECTROSCOPY  

(AS A RAPID METHOD) COUPLED WITH MACHINE LEARNING APPROACHES 

FOR DETECTION AND QUANTIFICATION OF GLUTEN CONTAMINATIONS IN 

GRAIN-BASED FOODS 

 

Cross-contamination between food grains during harvesting, transportation, and/or 

food processing is still a major issue in the food industry. Due to cross-contact with gluten-

rich grains (wheat, barley, and rye grains), gluten can get into food that’s naturally free 

from gluten and thus may not be safe for consumption for people susceptible to gluten-

related disorders such as celiac disease, wheat allergy, gluten intolerance or sensitivity. The 

conventional method of gluten detection is cumbersome, time-consuming, and requires 

well-trained personnel. Therefore, there is a need for a rapid and equally effective 

technique to authenticate gluten contamination in foods. This research work explored the 

use of a Fourier transform infrared (FTIR) spectroscopy coupled with machine learning 

approaches to detect and quantify gluten contamination in grain-based foods. The research 

was divided into three different phases including the use of FTIR with supervised machine 

learning (ML) approaches to authenticate cross-contact between non-gluten and gluten 

flours, the use of FTIR with ML approaches to detect and quantify wheat flour 

contamination in gluten-free bread (cornbread), and finally, the use of Enzyme-linked 

immunosorbent assay (ELISA) as a complementary test to estimate and establish a gluten-

free threshold of  ≤ 20 ppm for the amount of gluten in wheat contaminated flour and 

cornbread.  

Different machine learning algorithms such as linear discriminant analysis (LDA), 

partial least square regression (PLSR), k-nearest neighbor (KNN), support vector machine, 

decision tree, and ensemble learning method were used for the development of ML models. 

The results obtained for the first phase of the research show that FTIR with LDA and PLSR 

has the potential to detect and quantify cross-contact between a non-gluten (corn flour, CF) 

and gluten-rich (wheat flour, WF, barley flour, BF, and rye flour, RF) flours, at 

contamination levels of 0.5% - 10% (w/w), with 0.5% increments. For the second phase, a 

majority voting-based ensemble learning (stack of random forest, k-nearest neighbor 

(KNN) and support vector classifier) model was able to detect WF contamination in a 

cornbread at the true-positive rate and false-negative rate of 1.0, respectively. The ELISA 

tests for both phases (the raw flour samples and the baked bread) showed a threshold limit 

of ≤0.5% contamination level for CF contaminated with WF to be labeled gluten-free and 

≤ 3.5% for the cornbread contaminated with the WF to be gluten-free. This research is still 

in its development stage and has the potential to contribute towards artificial intelligence 

applications in ensuring food safety, and to food quality inspection. 

 

KEYWORDS: Gluten, Wheat Allergy, Celiac Disease, Cross-Contamination, Machine 

learning, FTIR Spectroscopy 
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CHAPTER 1.  INTRODUCTION 

1.1  General Background 

1.1.1 Gluten Contamination 

Foods containing gluten are not suitable for people with gluten-related health 

implications such as celiac disease, wheat allergy, and gluten intolerance. People suffering 

from these disorders need to strictly stay away from gluten-containing foods to avoid any 

kind of health complications such as a bloated stomach, extreme fatigue, bone pain, muscle 

pain, headaches, etc., and in some critical cases, there can be an occurrence of anaphylaxis, 

a life-threatening allergic response (Elli et al., 2015). Thus, they have to depend on a 

“gluten-free” diet as the only means of dealing with these health issues. 

Food rich in gluten can be described as any food containing the three major gluten-

rich grains, which are wheat, barley, and rye grain. For food to be considered as “gluten-

free”, it must have a limit of ≤ 20 ppm of gluten from any of these grains or their 

crossbreeds (Lacorn et al., 2017). However, food or diet completely free from gluten would 

be hard to sustain. Higher trace amounts of gluten may be found in gluten-free products on 

the market due to cross-contact during the growing of grains alongside the gluten-rich 

grains, harvesting, transporting or food processing that requires the use of the same food-

processing equipment or kitchen space for both non-gluten and gluten-rich grains 

(Thompson, 2003; Thompson et al., 2010). Contamination of foods with gluten has been a 

major challenge of “gluten-free” products which are required to attain the regulatory (the 
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U.S Food and Drug Administration) threshold limit. Valdés et al. (2003) tested over 3,000 

products and reported that in Europe, one-third of gluten-free foods may contain over 20 

ppm of gluten. Also, in the United States and Sweden, gluten contamination is a major 

issue. According to reports by Størsrud et al. (2003) and Thompson (2004), there was high 

contamination of gluten in the majority of the oats-based foods purchased from the market. 

In another study, Lee et al. (2014) analyzed 78 samples of foods in the U.S. market with 

gluten-free label on them and reported that 16 samples (20.5%) of the total samples have 

gluten levels of  > 20 ppm, varying between 20.3-60.3 ppm. Specifically, five out of eight 

cereal food samples for breakfast showed gluten contents above 20 ppm. The results 

obtained justify a need for more reliable rapid means of checking for gluten contamination 

in foods and a need to ensure that food labeled “gluten-free” is safe for consumption for 

the people susceptible to gluten. Therefore, the use of a non-destructive method, Fourier 

transform infrared (FTIR) spectroscopy was explored in this study. 

1.1.2 FTIR Spectroscopy method coupled with the machine learning process 

Spectroscopy is a study that uses optical technology to evaluate or measure the 

interaction between electromagnetic radiation and material, or samples, involved at 

different wavelengths (spectrum). This has become a major contactless means of carrying 

out precise quality control and examination of food constituents such as sugars, protein, 

lipids, and other different chemical compounds (El-Mesery et al., 2019). The principle of 

Fourier transform infrared spectroscopy is that of molecular bond absorption of light 

energy frequency in the electromagnetic continuum which depends upon the state 
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(vibrational, electronic, or rotational). The intensity of the absorption is estimated at 

different uniform wavenumbers. The FTIR spectroscopy technique uses the Fourier 

transformation principle to generate or convert the readings at the detector to a frequency 

spectrum depicting a molecular “fingerprint” of a sample or material being measured. FTIR 

spectroscopy collects high-resolution spectra data simultaneously and covers a wide range 

of spectra features. The spectra data generated contains highly correlated features including 

noise and redundant features at each wavenumber. The data are arranged in an array format 

making it applicable to being assessed using different chemometrics (the science of using 

data-driven means to extract information from chemical systems).  

The machine learning (ML) approach is a data-driven process that involves using 

computer algorithms to learn from previous or past information without explicitly being 

programmed. The procedure starts with the collection or observation of data through 

examples, direct experience, experimental setup to identify a pattern in the data collected 

or observed, and make an informed decision in the future depending on the domain of the 

information. The basic motive is to allow a computer to learn automatically without human 

interference or aid and calibrate actions accordingly.  

The overall goal of this study was to integrate the principle of FTIR spectroscopy 

to obtain spectra data with unique chemical and structural information about the samples 

used, learn or identify patterns in the spectra data using supervised ML approaches, and 

thus, prototype ML models that can be utilized to authenticate gluten contamination based 

on what has been learned from the spectra features. The study is divided into three phases: 

authentication of cross-contamination of gluten-rich and non-gluten raw flour samples, 
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authentication of cross-contamination of wheat-flour in processed samples (baked bread), 

and execution of a complementary analysis using enzyme-linked immunosorbent assay 

with the following objectives listed below. 

1.2 Specific Objectives 

The specific objectives of this research include:  

1. The detection and quantification of gluten-rich flour (wheat flour, barley flour and 

rye flour) contamination in a non-gluten flour (corn flour) using FTIR coupled with 

machine learning approaches at the contamination levels of 0-10% with 0.5% 

increments. 

2. Application of FTIR with machine learning approaches for quantification of wheat 

flour contamination in non-gluten bread (cornbread) at the contamination levels of 

0-10% with 0.5% increments. 

3. Enzyme-linked immunosorbent assay (ELISA) to establish the regulatory gluten-

free labeling threshold (≤ 20 ppm) for the wheat flour (WF) contamination levels 

in objectives 1 and 2. 

At the end of the research, the expectation is to obtain ML models that can be integrated 

into a software system (e.g. mobile or computer application) with the ability to detect and 

quantify cross-contamination between a non-gluten and gluten flour sample. Also, if 

possible, estimate the amount of gluten present in the contaminated sample within the 

domain used. 
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CHAPTER 2.  LITERATURE REVIEW 

 This part of the study gives a comprehensive review of gluten and the health 

implications (symptoms) associated with gluten-related disorders. Also, Fourier 

transformed infrared (FTIR) spectroscopy with its application to food analysis, quality 

control, and inspection, and machine learning approaches is briefly discussed below. 

2.1 Gluten Overview 

Gluten is a type of protein family that mainly exists in wheat, rye, barley, and their 

crossbred varieties. Gluten also exists in food products that contain extracted or pure gluten 

as a source of protein or binding agent (Biesiekierski, 2017). In some cases, due to cross-

contamination,  gluten-free products may also contain gluten in the process of harvesting, 

transporting, storage of grain and/or during the process of manufacturing a gluten-free food 

products (Sharma et al., 2015). Gluten composites are prolamins and glutelins. Prolamins 

are poorly soluble in water but highly soluble in alcohol. Prolamins can be extracted using 

40-70% ethanol. In barley, rye, wheat and oats grains, prolamins are referred to as hordeins, 

secalins, gliadins and avenins, respectively.  Glutelin fraction is soluble in dilute acids or 

alkali solutions, and the wheat glutelins are called glutenin (Shewry et al., 2002). 

Also, gluten protein can be grouped based on the amount of sulphur they contain, 

their structural size, or properties (Kanerva, 2011). For example, prolamins are monomeric 

and are characterized by weak hydrogen bonds, intramolecular disulfide bonds, and easily 

soluble in water-alcohol mixtures (Waga, 2004). However, glutelins are polymerics and 
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also contain intermolecular bonds that adjust them to form a network when cooked or 

heated.  

2.1.1 Effects of Processing on Gluten Proteins 

Different conversion processes affect and modify gluten protein in a variety of 

ways. For example, baking and cooking processes denature gluten protein by forming new 

disulfide bonds and aggregates which makes it more difficult to extract the gluten proteins. 

This may result in lower gluten protein solubility and lead to a lower rate of detection that 

will require modification of the extraction protocol (Hayta & Alpaslan, 2001). The 

extrusion process has a major effect on the solubility of the protein structure. Extrusion 

process involves a redox reaction that modifies the protein’s secondary structure caused by 

heat and shear of the extrusion. These modifications in the structure of proteins and starches 

are crucial for the final properties of the product (Camire, 1998). The process of 

fermentation and hydrolysis has been reported by Kanerva (2011) to break down protein 

into smaller fragments resulting in a decrease and difficulty in the identification and 

estimation of the proteins. Other processes that can affect the solubility and detectability 

of protein include deamination, transamination, mixing, sheeting, drying, etc.  (Hayta & 

Alpaslan, 2001). Therefore, these processes should be considered when testing for gluten 

proteins on these products as they affect the result obtained. 
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2.1.2 Gluten-Related Disorders 

Most people can tolerate gluten-rich foods but for some people, it causes several 

kinds of immune responses and other physiological reactions. Some of the gluten-related 

disorders such as celiac disease, wheat allergy, gluten intolerance, dermatitis herpetiformis, 

and gluten ataxia are discussed below. 

2.1.2.1 Celiac disease 

Celiac disease (CD) is an auto-immune reaction that causes damages to the 

intestinal villi (small intestine) that can lead to inflammation and less nutrients absorption 

when foods containing gluten are consumed by susceptible individuals (Meresse et al., 

2012). Lebwohl et al. (2015a) reported that the symptoms of celiac disease vary widely 

including both intestinal and extra-intestinal. The symptoms of celiac disease are often 

similar to the symptoms of other gluten-reltated disorders or diseases such as lactose 

intolerance which complicates diagnosis. In adults, these symptoms range from diarrhea, 

weight loss, bloating, abdominal pain, infertility, neurological or psychiatric problems, to 

vitamin deficiencies. Additionally, infants and children usually have symptoms of diarrhea, 

and abnormal stretching of the abdomen, dental defects, anemia, developmental delay 

(Lebwohl et al., 2015a). Furthermore, other symptoms may vary and include a bloated 

stomach, breathing difficulties, mouth ulcers, extreme fatigue, bone pain, hives, nausea, 

inability to focus, and in some critical cases there can be an occurrence of anaphylaxis, a 

life-threatening allergic response  (Nordqvist, 2018).  
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According to a study by Rubio-Tapia et al. (2012), the common cases of CD in the 

United States was 0.71% (1 in 141) and similar with that of many European countries, 

while the widely accepted prevalence of CD as of recent in the United States is at 1% (1 in 

133 of average healthy people) (Fueyo-Díaz et al., 2019). Also, the incidence of diagnosed 

CD has been reported by Lebwohl et al. (2015a) to be increasing with data from a North 

American country indicating a steady rise in occurrences from 1950s reaching 17 per 

100,000 people each year from 2008 to 2011. Several factors that contribute and affect the 

prevalence and incidence of CD include genetics, exposure to gluten, infant feeding 

patterns, awareness of the disease (among medical practitioners and patients), frequency 

of testing and other environmental risk factors (Lebwohl et al., 2015b).  

2.1.2.2 Wheat Allergy 

 Inomata (2009) defines a wheat allergy as adverse immunological reactions that are 

caused by proteins found in wheat. These reactions are not only due to gluten but may be 

triggered by other proteins found in wheat including albumins (dissolvable in water and 

harden by heat) and globulins (dilute in a solution of salt) (Tatham & Shewry, 2008). The 

symptoms associated with the reactions may rapidly progress from tolerable to acute 

symptoms. In children, wheat consumption can cause bronchial obstruction, urticaria, 

nausea, angioedema, and abdominal pain, or in acute manifestation systemic anaphylaxis. 

Impeded supersensitivity symptoms may appear within 24 hours after the consumption of 

food-containing-wheat and include gastrocolic symptoms and aggravation of atopic 

dermatitis (Majamaa et al., 1999; Varjonen et al., 2000). In adults, allergies of food related 
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to wheat ingestion seem to be rare and can be described as an anaphylactic reaction 

typically caused by workout activities (Crespo & Rodriguez, 2003). These allergic 

reactions can be triggered in a few minutes or hours of the food consumption and if not 

managed properly, can result in a critical condition or state. 

2.1.2.3 Gluten sensitivity or intolerance 

Gluten sensitivity (GS) or non-celiac gluten sensitivity (NCGS) is a non-allergic or 

non-autoimmune response to gluten (Schuppan et al., 2015). Any response or reaction that 

is not triggered by the body’s immune system when gluten-containing foods are consumed 

is termed NCGS. People susceptible to NCGS also experience gastrointestinal symptoms 

such as fatigue, constipation, abdominal pain, diarrhea, skin rashes, muscle pain, 

headaches, eczema, bloating, anemia, and depression (Fasano et al., 2015). These 

symptoms usually appear after gluten has been consumed and then disappear when gluten 

is no longer being consumed. Opposing to CD and wheat allergy, there is no clear 

histopathologic basis for physicians to confirm the pronouncement of NCGS (Elli et al., 

2015). Also, in the United States, the prevalence of NCGS has been estimated to be up 6% 

of the American population (Mooney et al., 2013). 

2.1.2.4 Dermatitis Herpetiformis 

Dermatitis herpetiformis (DH) is an autoimmune-related chronic skin condition 

that occurs in genetically susceptible people when exposed to gluten-rich foods. DH affects 

about 10-15% of patients with gluten-sensitive enteropathy (celiac disease). The presence 
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of digestive symptoms is not frequent in DH, people of all ages can be affected by DH but 

usually seen in those between the ages of 30 and 40 for the first time. Additionally, the 

development of DH tends to show up more in northern Europeans than in Africans or 

Asians (Celiac Disease Foundation, 2020). The clinical conditions of DH are characterized 

by grouped polymorphic lesions comprising of erythema, papules, and urticarial plaques, 

including the extensor surfaces of the elbows, knees, hindquarters, sacral locale, shoulders, 

neck, face, and scalp (Antiga & Caproni, 2015). Furthermore, Antiga and Caproni (2015) 

reported that sometimes patients may show erythema or serious pruritus alone, in this 

manner making the diagnosis of DH more difficult. 

2.1.2.5 Gluten Ataxia 

 Hadjivassiliou et al. (2003) reported gluten ataxia as an immunologically 

intervened illness, gluten sensitivity spectrum part, and records for up to 40% of instances 

of idiopathic sporadic ataxia. Gluten ataxia is related to celiac disease but it mainly affects 

the brain and central nervous system with no gastrointestinal symptoms (Hadjivassiliou et 

al., 2002). Specifically, the cerebellum is attacked by the antibodies produced because of 

the response of the immune system when food-containing gluten is consumed 

(Hadjivassiliou et al., 2015), which may lead to certain effects such as fatigue, inability to 

balance, nausea, vomiting, loss of coordination, speaking difficulties, swallowing 

difficulties, and abnormal gait or difficulty walking (Gluten Free Society, 2020). 
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2.2  Method of Fourier transformed infrared spectroscopy (FTIR)  

Infrared spectroscopy involves the interaction of electromagnetic radiation in the 

infrared region of a spectrum (infrared light) with a molecule. The infrared region is usually 

between 4000-400 cm-1 where the cm-1 unit is the wavenumber scale and is given by 

1/frequency (wavelength in cm). Excitation of the vibration of the covalent bonds within a 

molecule is trigerred by the infrared radiation (IR) and can incorporate stretching and 

bending modes. Fourier transformed infrared spectroscopy (FTIR) applies the principle of 

infrared spectroscopy and using a mathematical method called Fourier transform (FT) to 

change over time space domain to traditional frequency domain spectrum to decode all the 

reading or recording (interferogram) from the spectroscopy detector (Baravkar et al., 2011; 

Doyle, 1992). 

 Ismail et al. (1997) described an infrared spectrometer to be essentially made up of 

a steady source of infrared light energy, a technique for changing or transforming the 

infrared radiation into its component wavelengths (a fixed or moving mirror or a beam 

splitter), and a detector. The equation below mathematically defines the process of 

obtaining an IR range from a sample. 

 

  𝑇(𝜈) =
𝐼(𝑣)

𝐼0(𝑣)
⁄                (2.1) 

 

where T designates the transmittance, I is defined as the intensity of the IR in contact with 

the detector when the sample is placed between the source and the detector, I0 is the 
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intensity reaching the detector without any sample in between the beam, and 𝑣  designates 

the wavenumber of the IR. Theoretically, the spectrum is obtained by measuring the 

transmittance at equally spaced wavenumber intervals, ∆ 𝑣, where, ∆ 𝑣 is defined as the 

resolution. Usually, the y-axis of the spectrum is converted from units of percent 

transmittance (%𝑇 =  100 ×  𝑇) to absorbance (A) units using the relational equation 

below. 

𝐴 =  −𝑙𝑜𝑔 𝑇       (2.2) 

Furthermore, the advantages of the FTIR method include being a fast, label-free, 

and non-destructive method that provides several spatially settled infrared spectra 

containing chemical and structural information of a molecular compound presented in an 

array format. The rich information that is contained in the spectra data obtained allows 

multiple functional groups in the molecular compound to be tracked using the intensity of 

the peaks formed. Different mathematical analysis or modeling can be carried out due to 

the data formation in an array (Kazarian & Chan, 2013). 

Many researchers have shown evidence of using FTIR and some other spectroscopy 

methods with ML algorithms as fast and non-destructive means of food safety, quality 

inspection, and control. Recently, Sujka et al. (2017) examined the use of FTIR 

spectroscopy for quality assessment of flours acquired from Polish producers. In the study, 

11 flour types from various grains (wheat, rye, spelt, triticale, and spelt bran) were 

investigated. There physical and chemical composition were obtained and FTIR spectra 

data were correlated with reference results using classical square regression (CSR) and 

partial least square regression (PLSR). The author noted high linear correlations between 
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the real and estimated or predicted values of the parameters examined. The simpler CSR 

procedure was noted to produced preferred outcomes over the PLS strategy. A quick 

strategy for an examination of potential wheat flour added to oat flour was created by Wang 

et al. (2014) using FT-NIR spectrometry and chemometrics. FTIR-spectra data of samples 

of unadulterated oat and wheat flours were obtained with adulteration levels of 5- 50% at 

5% increment measured within the working range of 4000–12000 cm-1 and partial least 

squares regression (PLSR) models were created on both raw and pre-processed (standard 

normal variate) data with Monte Carlo cross-validation. For all of the PLS models, the 

differences between root mean square error of prediction (RMSEP = 1.921) and root mean 

squared error of Monte Carlo cross-validation (RMSEMCCV = 1.975). Three or four 

component PLS models were highlighted to accurately predict the levels of wheat flour in 

oat flour. Amir et al. (2013) applied FTIR spectroscopy for the identification of wheat 

assortments. Four economically accessible wheat assortments were studied for their 

physical, chemical, and rheological properties using standard method and advanced FTIR 

technique. It was observed that FTIR provided an excellent means to visualize the chemical 

composition of the different wheat varieties with an added advantage of being very quick, 

reliable, and cheaper over the use of the standard method. In another study, Duarte et al. 

(2002) used FTIR spectroscopy to quantify the amount of sugars (as a function of ripening) 

in mango juice. Mango juices obtained from the Tommy Atkins mango cultivar grown in 

Brazil were used and a six concentration levels of different types of sugar (glucose, 

fructose, and sucrose) arranged by a triangular test design (1 solution of each sugar, 9 

binary mixtures, and 10 ternary mixtures) as the calibration set were utilized. The author 
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concluded that FTIR coupled with partial least squares (PLS) regression and calibrated by 

triangular model of standard sugar solutions has the potential to authenticate the amount of 

sucrose (1.4 prediction error), fructose (1.4 prediction error), and glucose (4.9% prediction 

error) in mango juices got from the fruits at different ripening degrees. FTIR spectroscopy 

was also utilized to analyze the defilement of extra virgin oil with palm oil by Rohman and 

Man (2010). Samples of pure extra virgin olive oil (EVOO) and those defiled with palm 

oil (PO) in accurately weighted proportions of 1-50% were classified using discriminant 

analysis. The quantification method explored the use of PLS and principal component 

regression (PCR) at FTIR wavenumber region ranging from 1500–1000 cm-1. The 

performance metrics (R2 = 0.999 and RMSE of cross-validation of 0.285 (PLS) and 0.373 

(PCR)) obtained from the study indicates the effectiveness of using FTIR spectroscopy for 

the evaluation of PO in EVOO. Other spectroscopy methods including near-infrared 

reflectance and Fourier transform (FT) Raman spectroscopy have shown great potential as 

a reliable, cheaper and rapid non-destructive method of food quality analysis. BAŞLAR 

and Ertugay (2011) used the capability of near-infrared reflectance spectroscopy (NIRS) 

for the assurance of protein, dry and wet gluten contents and Zeleny sedimentation of wheat 

flour. Wheat bread samples (120 samples) were used and their NIRS data were recorded at 

2nm intervals from 1100–2500 nm using NIRS systems 6500 scanning spectrophotometer 

(Foss NIRSystems Inc., USA) in reflectance mode. The results acquired showed that the 

execution of the NIRS for wet and dry gluten appears to be strongly subjected on the 

correlation to protein content. Czaja et al. (2016a) evaluated FT-Raman spectroscopy for 

quantification of gluten in wheat flour. FT-Raman spectra were collected for three groups 
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of samples including pure wheat, wheat adulterated with 2-5% starch or 2-4% gluten, and 

wheat adulterated with starch, dietary fiber, and corn oil in the region of 100–3700 cm-1 at 

a resolution of 8 cm-1. Partial least squares regression (PLSR) models were implemented 

with principal component analysis, and pre-treated using mean value normalization, 

multiplicative scatter correction algorithms, and standard normal variate (SNV). FT-

Raman spectroscopy was observed to have a very high potential for gluten evaluation in 

wheat flour. Furthermore, FTIR spectroscopy has also been increasingly applied in some 

other areas of food research, such as nuts (Ciemniewska-Żytkiewicz et al., 2015; Dogan et 

al., 2007), quality assessment of fats and dampness determination in butter  (Van de Voort 

et al., 1992a), oils (Quiñones-Islas et al., 2013), cakes and flakes (Reder et al., 2014), honey 

adulteration (Gallardo-Velázquez et al., 2009) and meat (Rohman et al., 2011; Xu et al., 

2012). 

In this study, FTIR coupled with machine learning approaches was used to inspect 

and assess gluten contamination in grain-based foods. From the previous studies, FTIR has 

been widely used and can be seen to be effective for food inspection and quality 

assessment. The potential of using FTIR coupled with different chemometrics can also be 

justified.  
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2.3 Machine Learning Approaches 

2.3.1 An Overview on Machine Learning 

Machine learning (ML) involves the technique of learning from a set of data to 

execute a task. The data learned from include data from a previous experience, this could 

be historical data collected over a period of time or an organized set of data which can be 

collected through an experimental design or laboratory setup. The data is made up of a set 

of examples, each example is characterized by a set of attributes, otherwise called features 

or variables. This can be represented in the form of nominal (e.g. gender, age, race, etc.), 

binary (accepts two possible values, true or false, represented by 0 or 1), ordinal (an ordered 

form of categorical values e.g. educational level: elementary school, high school, college, 

graduate school), or numeric (measurable data e.g height, width, heart rate, etc) (Liakos et 

al., 2018). Ayodele (2010a) defined machine learning as a process of developing a system 

of computer that automatically learns and improves with experience. Furthermore, the focal 

point of many scientific disciplines is to model a function that relates between a lot of 

observables features (inputs) and another arrangement of features that are identified with 

these (outputs). The mathematical model created would then be able to be utilized and to 

potentially anticipate the estimation of the desired variables by estimating the observables. 

In reality, some genuine encounters are too compounded to be directly modeled as a closed 

system of input to output relationship. Therefore, machine learning gives strategies that 

can naturally construct and alter a computational model that fits into these complex 
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connections through augmenting information from the past experience and executing 

assessment to limit mistakes or minimize error (Baştanlar & Özuysal, 2014).  

2.3.2 Types of Machine Learning (ML) Approaches 

According to Ayodele (2010b) the different types of approaches in ML algorithms 

include supervised learning, unsupervised learning, and reinforcement learning. Also, the 

ML algorithms can be dependent on the type of their input and output data, and the intended 

type of task to be executed or problem to be solved. Supervised learning instances use 

labeled examples – known input X and the corresponding output Y is used to train a 

learning algorithm that would predict the relationship between X and Y (P(Y|X)). This is 

typically utilized for developing classification and regression models (Lee et al., 2018a). 

In contrast, unsupervised learning uses unmarked or unlabeled examples (the input of X 

value only) to learn and make predictions (P(X)) and it’s mainly applicable to clustering 

tasks, compression, feature extraction, etc. When some training examples are missing 

training labels, an approach of semi-supervised learning which uses unlabeled examples in 

conjunction with labeled examples to help gain proficiency on the probability distribution 

over the input space P(X) is utilized in order to produce a considerable improvement in the 

learning accuracy. 

Reinforcement learning combines the learning process of the input X with an acting 

phase (critic (C)) to simultaneously learn and achieve a self-optimizing feature. The 

training information that is made available to the learning algorithm by the environment 

(external trainer) is a scalar fortification sign that comprises a proportion of the operational 
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accuracy of the system. The learning algorithm isn't coordinated to which actions to take, 

yet rather should find the activities that yield the best result, by attempting each activity in 

a steady progression (Baştanlar & Özuysal, 2014; Kotsiantis et al., 2007).  

This research focuses on the use of supervised machine learning approaches. The 

flow chart in Figure 1 below displays a supervised machine learning (ML) application 

process towards model prototyping and was utilized in developing our models throughout 

this work. 

 

Figure 2.1: Supervised machine learning approach to real-life experience (Kotsiantis et 

al., 2007) 
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The process begins with obtaining the required dataset from the area or region of 

interest, which requires identifying the most informative  fields, features, or attributes. This 

could either be done by an expert with vast knowledge in that area or by the least complex 

strategy of using “brute-force,” which involves estimating and considered every feature 

with the expectation that the important or relevant features can be confined. However, the 

process of “brute-force” dataset collection does not directly work well with induction. In 

most cases, it tends to contain noise, redundant features, or missing feature values, and in 

this way would require huge pre-processing (Zhang et al., 2003). 

Data pre-processing is the next step after the required data have been identified. In 

real-world experience, data representation is often very complex and has too many features 

with only a few related to the targeted objective(s). There are usually redundant variables, 

where only a few features are correlated and needed for modeling; and interdependence, 

where at least two features collected pass on significant information that is unclear if one 

feature is incorporated without the other (Guyon & Elisseeff, 2003). Data pre-processing 

can help remove redundant data or eliminate noise. It can also be used to select the most 

informative features that would significantly affect speculation execution of a supervised 

ML algorithm. It incorporates data preparation exacerbated by integration, cleaning, 

standardization, and data transformation; and data reduction tasks such as instance 

selection, feature selection, discretization, etc. The outcome of a dependable and successful 

execution of data pre-processing task is a useful and adequate final dataset selected for 

subsequent data analysis such as classification and predictive modeling (García et al., 

2015). In spectra transformation or preprocessing, several pre-processing methods can be 
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used including smoothing, multiplicative scatter correction (MSC), standard normal variate 

(SNV), derivatives (Savitzky–Golay), normalization, etc. The functions of these 

techniques differ and are based on the circumstances, for example smoothing by Savitzky–

Golay method and first-derivative transforms can be used to eliminate noise and baseline 

offset discrepancies from a set of spectra data respectively, while the second-derivative 

transforms are useful in separating protruding peaks and tapered spectra features (Cen & 

He, 2007; Wu et al., 1995). The impacts of non-uniform dissipating obstructions and 

particle size throughout a spectrum can be eliminated using MSC (by using calculated 

mean spectrum of the dataset) and SNV (by normalizing every spectrum utilizing just the 

information from that specific range) (Barbin et al., 2012; Maleki et al., 2007).  

Kotsiantis et al. (2007) reported that the algorithm selection is a critical step done 

by preliminarily testing different algorithms and once the evaluation criteria are satisfied, 

the best performing algorithm can be selected for routine use. Over a decade, various 

supervised ML algorithms have been shown in studies to be effective in the classification 

of protein structure such as support vector machine (Cai et al., 2001; Shamim et al., 2007), 

decision trees (Çamoglu et al., 2005), neural networks (Chung et al., 2003; Ding & 

Dubchak, 2001), ensemble learning methods (Saha et al., 2014; Tan et al., 2003), random 

forest (Dehzangi et al., 2010), partial least square regression and others.  

The training procedure usually involves splitting the dataset by using about 70-80% 

for training (training set) and the other 20-30% for evaluating performance (test set). 

Another strategy, known as cross-validation which may involve dividing the training set 

into fundamentally unrelated and equivalent measured subsets and for every subset, the 
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classifier is trained on the combination of all the other subsets. The error rate of the 

regressor/classifier is then estimated by averaging the rate of the error of each subset 

(Kotsiantis et al., 2007). 

The performances of these algorithms are often evaluated based on the purpose of 

usage (classification or prediction). The classifier's assessment is regularly founded on 

obtaining the confusion matrix (CM) parameters by computing the true positives (TP); the 

number of effectively perceived class tests, true negatives (TN); the quantity of accurately 

perceived examples that are not part of the class, and false positives (FP); samples that 

were either erroneously allotted to the class or false negatives (FN); that were not perceived 

as class samples (Sokolova & Lapalme, 2009). Other measures can be calculated based on 

the scores of TP, FP, FP and FN such as the precision, sensitivity or recall (true positive 

rate); extent of positive cases that were accurately recognized, and specificity (true negative 

rate); extent of negatives cases that were accurately recognized by the algorithm (Forbes, 

1995). The assessment of the performance of the regressor model is usually done by 

computing the statistical parameters such as the coefficient of determination (R2) and root 

mean square error (RMSE). After the evaluation process using the test data, if the outcome 

of the analysis satisfies our desired result(s), the classifier or regressor is then selected or 

deployed for future classification or prediction. 
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CONNECTING STATEMENT 

In this part of the study, we explored how Fourier transformed infrared (FTIR) 

spectrometer with different machine learning (ML) algorithms could be used to develop 

models to authenticate gluten-related cross-contamination in raw-flour foods (uncooked 

food). One of the advantages of building models with raw foods is that the food chemical 

structures are still intact and there was no form of deformation from conversion processes 

yet. Because of this, it was easier to understand what is happening within the FTIR-spectra 

data obtained when visualized and it helps to make better intuition during ML model 

prototyping. Therefore, we studied how we can detect and quantify cross-contamination 

between a non-gluten flour (corn-flour) and the three major gluten-rich flours including 

wheat flour, barley flour, and rye flour.  
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CHAPTER 3.  DETECTION AND QUANTIFICATION OF CROSS-CONTACT OF A NON-GLUTEN 

AND GLUTEN-RICH FLOURS BY FOURIER TRANSFORM INFRARED (FTIR) 

SPECTROSCOPY COUPLED WITH MACHINE LEARNING APPROACHES 

Abstract 

Gluten-related disorders can result in serious health issues if not managed properly 

by maintaining a 100% gluten-free diet. In this study, FTIR coupled with supervised 

machine learning approaches (linear discriminant analysis and partial least squares 

regression) were evaluated for the detection and quantification of cross-contact between a 

non-gluten (corn flour (CF)) and gluten-rich (wheat flour (WF), barley flour and rye flour) 

flours, at contamination levels of 0.5% - 10% (w/w), with 0.5% increments. The F1-scores 

(0.963, 0.949, 0.963 and 1.0), R2p (0.96, 0.94, and 0.98), and RMSEP (0.82, 0.99, and 0.53) 

obtained for the best results show that the methods used have the potential to authenticate 

the cross-contact of non-gluten and gluten-rich flours within the defined contamination 

levels. 

 

KEYWORDS - Celiac Disease, FTIR, Gluten, Machine learning, Wheat flour 
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3.1 Introduction 

Gluten is a family of proteins mainly present in wheat, barley, rye, and their cross-

breeds. Gluten provides nutritional benefits and impacts important functionality in 

processed foods like bread with the viscoelastic property it imparts. However, it causes 

several health-related disorders that can lead to some severe health issues if not managed 

properly. These gluten related-disorders have no cure and the only effective treatment is to 

avoid any food that contains any of the gluten-rich grains and their cross-contacts (Mena 

& Sousa, 2015). Due to cross-contact with these grains during food processing or 

packaging, foods that are non-gluten may be contaminated with gluten. Therefore, there is 

a need for more fast and effective techniques or methods to ensure that gluten-free foods 

are safe for consumption for people with these disorders.    

Some of the major health disorders related to gluten consumption in foods are celiac 

disease, wheat allergy, and gluten sensitivity, or gluten intolerance. Albanell et al. (2012) 

reported celiac disease as an immune system intervened enteropathy that is brought about 

by the response of consuming gluten-containing grains in food such as wheat, rye, barley, 

and oat in genetically susceptible people. These reactions from the response of the immune 

system affect the villi of the small digestive tract and if left untreated can lead to other 

critical health issues. Keeping up a diet without gluten is the best way to prevent symptoms 

of celiac disease (Albanell et al., 2012; Feighery, 1999). In non-celiac gluten sensitivity, 

there is no response from the body’s autoimmune system – rather it is triggered by the 

body’s intolerance to gluten and it has similar symptoms to celiac disease when gluten-
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containing foods are consumed (Tanveer & Ahmed, 2019). The abnormal immune system 

response to at least one of the proteins found in wheat is what triggers wheat allergy and 

this might not necessarily be gluten (Tatham & Shewry, 2008). Several serious health 

symptoms associated with reaction to gluten include but are not limited to a bloated 

stomach, fatigue, diarrhea, stomach pain, breathing difficulties, hives, inability to focus, as 

well as pain in the bones and joints (Nordqvist, 2018). 

To ensure foods (raw and processed) are gluten-free, several studies have explored 

the use of different chemical and/or non-destructive methods for detecting, visualizing and 

quantifying gluten with the overall goal of ensuring that gluten-free foods do not contain 

gluten above the regulated limit. The standard wet chemical analytical method approved 

by the Association of Official Analytical Chemists (AOAC International) for identifying 

and measuring gluten in food is by enzyme-linked immunosorbent assay (ELISA) and for 

food to be marked as gluten-free it must contain 20 ppm gluten or less (Lacorn et al., 2017). 

The steps involved in this method are cumbersome and time-consuming especially when 

an enormous number of samples are to be examined. However, non-destructive methods 

have the added advantage of being rapid, less laborious, efficient, and reliable. 

Fourier transform infrared spectroscopy (FTIR) is a reliable, fast, and non-

destructive method with next to zero sample preparation needed. It uses the principle of 

infrared light energy interaction with the molecular vibration of substances to obtain 

chemical and structural information from samples (Glassford et al., 2013). Such 

information from FTIR can be used to make informed decisions in food processing, 

inspection, and analysis, and this has been broadly utilized for food quality assessment and 
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food adulteration control (Rodriguez-Saona & Allendorf, 2011). Previous studies by  Sujka 

et al. (2017) reported FTIR spectroscopy to have the potential for quality assessment of 

flours obtained from different producers in Poland (“Strzelce” company (Borowo, Poland), 

with a Quadrumat Senior mill (Brabender), Jelonki Ltd (Ostr´ow Mazowiecka, Poland), 

Młyny Wodne Ltd. (Korczew, Poland)). Supervised machine learning (ML) statistical 

models such as classical square and partial least square regression (PLSR) with the leave-

one-out cross-validation techniques were explored. A range of coefficient of determination 

between (R2) 0.94 to 0.97 was obtained for the best performing results indicating the 

accuracy and effectiveness of the methodology. In another study, a quick means of 

analyzing measurable wheat flour added to oat flour was developed by Wang et al. (2014) 

using FT-NIR spectrometry and chemometrics, FTIR-spectra data of samples of 

unadulterated oat and wheat flours were obtained with adulteration levels of 5% - 50% at 

5% increment measured within the working range of 4000 cm-1 – 12000 cm-1 and PLSR 

models were developed on both raw and pre-processed (standard normal variate ) data with 

Monte Carlo cross-validation (MCCV). PLSR models were highlighted to precisely 

estimate the levels of wheat flour in oat flour. FTIR spectroscopy has also been increasingly 

applied in other areas of food research, such as nuts using principal components 

discriminant approach (Ciemniewska-Żytkiewicz et al., 2015; Dogan et al., 2007), oils 

using Soft Independent Modeling Class Analogy and PLSR approach (Quiñones-Islas et 

al., 2013), cakes and flakes (Reder et al., 2014), and meat (Rohman et al., 2011; Xu et al., 

2012). 
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For this study, the overall goal is to use FTIR coupled with machine learning 

approaches, for the evaluation of cross-contact of non-gluten and gluten-rich flours. 

Specifically, to obtain FTIR-data at different contamination levels, to evaluate multiple 

data pre-processing methods for effective analysis, to develop classification and regression 

models based on the pre-processing methods. 

Accomplishing these objectives will lead to the development of detection and 

quantification models that can be deployed to systems (online-application, mobile 

application, and other software applications) for rapid and effective non-destructive food 

inspection and quality assessment in the grain and food processing industries. It will 

enhance the inspection and authentication of gluten contamination in grain-based foods. 

3.2 Material and Methods 

3.2.1  Sample preparation and FTIR-Spectroscopy 

Gluten-rich flours, including wheat flour (WF), rye flour (RF), barley flour (BF) and a 

non-gluten flour (cornflour (CF)) were purchased from Bob’s Red Mill Natural Foods 

(Milwaukie Oregon, USA). The gluten-rich flours (WF, RF, and BF) were used to 

contaminate the non-gluten flour (CF) in the range of 0% – 10% (w/w) with a 0.5% 

increment. Approximately 20 g of the mixture were prepared for each treatment. The 

gluten-rich flours were thoroughly mixed and homogenized (using mini-vortexer) with the 

CF at the different contamination levels. For each of the preparations, 220 samples (10 

samples per contaminant level  20 levels with the addition of 10  2 for pure samples of 
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each gluten-rich flours and CF) were obtained. Based on this, 640 samples (200  3 for 

contaminated samples and 10  4 pure samples) were prepared.  

Attenuated total reflectance (ATR) spectra of the samples were recorded on a Fourier 

transform infrared (FTIR) spectrometer (Nicolet iS 50 Massachusetts, USA) in the 

frequency range of 4000 - 450 cm−1 with a resolution of 4 cm−1 and a total accumulation 

of 32 scans. The spectral data were then read into MATLAB R2018b (Mathworks Inc., 

Natick, MA, USA) for further analysis. The data were then divided into calibration and 

prediction sets at a ratio of 8:2 using Kennard-Stone (KS) algorithm (Galvao et al., 2005), 

that is 80% of the data were used for training and 20% for testing or validation of the 

models. 

3.2.2  Selection of the region of interest 

The spectral region between 1860-1480 cm-1 (C-N, C-C, C=O stretching vibrations) 

was selected as our region of interest for the classification models.  Within this region are 

the two significant groups of the protein infrared spectrum, amide I and amide II bands 

(Jabs, 2005). Amide I is between the frequency of about 1690 cm-1 and 1600 cm-1  and it is 

the most intense absorption band among the proteins present. The amide II is more complex 

than amide I and it is found in the region of wavelength or frequency between 1580 cm-1 

to 1480 cm-1 (Makarenko et al., 2002).  



www.manaraa.com

38 

 

 

3.2.3  Spectra pre-processing 

Attenuated total reflectance-FTIR spectra data in their raw form have highly correlated 

variables, which comprise of both informative and uninformative regions. Noise and 

correlated wavenumbers could decrease the capability of several multivariate techniques 

associated with exploratory and classification purposes (Lee et al., 2018b). Therefore, the 

aim of the spectra preprocessing is to eliminate or decrease undesired signals from the 

spectra before modeling. In addition to non-pre-processed data, the spectra data of the 

samples were pre-treated by the following methods: Savitzky Golay (SG) derivative (1st 

derivative, 2 order polynomials, 7 points window), mean-centering (MC), double centering 

(DC), smoothing (1st derivate and 2nd derivative), standard normal variate (SNV), 

multiplicative scatter correction (MSC), scaling, auto-scaling and robust auto-scaling 

methods. These different pre-processing methods were tested, and the methods which 

produced the best results were determined dependent on the model prediction coefficient 

of determination (R2p), and the lowest prediction root means square error (RMSEP). 

3.2.4  Model development and evaluation 

All models were developed using MATLAB R2019 (Mathworks Inc., Natick, MA, USA). 

3.2.4.1  Classification Model 

Classification models for the contaminated samples’ data were developed using the 

different spectra pre-processing methods and classification techniques including k-nearest 

neighbors, decision trees, and linear discriminant analysis (LDA) method on the selected 
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region of interest (1860 cm-1  – 1480 cm-1). Based on performance predicated on R2p and 

RMSEP, LDA with SG preprocessing was selected as the best classifier and was used for 

further development. The LDA function includes a linear combination of features and 

classification of samples based on the function’s value obtained (Duda et al., 2012), and 

this method comes with the added advantage of being simple to implement (Theodoridis 

& Koutroumbas, 2003). Bootstrap aggregation (bagging) was applied to the LDA in order 

to improve the performance of the learning algorithm. The bagging process generally 

involves training various M-base models by a cluster of different subsets of data of size n 

selected from a dataset T of size N where 𝑛 <  𝑁. The sample size of n is made by drawing 

arbitrary samples with replacement from the original training set T (Oza, 2005). This has 

the advantage of reducing variance, decreasing overfitting and handling higher 

dimensionality data (Kotsiantis & Pintelas, 2004). In this study, the datasets were divided 

into a training set (80%), and a testing set (20%), then the training set was divided into four 

subsets and each subset was used in training an LDA model using four-fold cross-

validation. Classifications were made on the test samples using a voting method on the four 

bagged LDA classifiers obtained (Rady & Adedeji, 2018; Varmuza & Filzmoser, 2016). A 

confusion matrix was then used to evaluate the model performance. The confusion matrix 

summarizes how successful the classification model is at predicting samples belonging to 

the different classes. The performance metrics calculated by the confusion matrix are the 

true negative (TN), true positive (TP), false negative (FN), false positive (FP), precision 

(P), recall (R), true negative rate (TNR), false-negative rate (FNR), true positive rate 

(TPR), false-positive rate (FPR), misclassification error (err), and F1_score (a measure of 
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test’s accuracy with value at 1 signifying best performance and 0 indicates model’s worst 

performance ). The higher the performance metrics (TPR, TNR, P, and F1-score) value 

(near 1), the more the accuracy of a model. The precision is the proportion of true positive 

prediction to the general number of the positive predictions. 

                                         𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                         (3.1) 

 

The extent of positive cases that were accurately measured (sensitivity), calculated exactly 

as recall (R) TPR:  

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                                (3.2) 

The extent of negatives cases that were inaccurately delegated positive, FPR: 

𝐹𝑃

(𝐹𝑃+𝑇𝑁)
                                                                (3.3) 

The extent of negatives cases that were classified accurately (Specificity), TNR: 

𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                                (3.4) 

The extent of positive cases that were inaccurately classified as negative, FNR: 

𝐹𝑁

(𝐹𝑁+𝑇𝑃)
                                                                (3.5) 

Misclassification error: the extent of the samples which were inaccurately classified, Err:  

                                  1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
(FP+FN)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                          (3.6) 

A measure of the model's accuracy, F1-Score: 

                                                F1_score = 2
 𝑃𝑅

𝑃+𝑅
                                                       (3.7) 
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3.2.4.2  Contamination quantification models 

Partial least squares regression (PLSR) was applied to the full spectra region to obtain 

the quantitative prediction models for the levels of each contaminant (wheat, barley, and 

rye). The PLSR was conducted based on the SIMPLS algorithm developed by (Jong, 1993). 

The input data were first pre-processed and were divided into a training set (80%) and 

prediction or test set (20%). Cross-validation (four-fold) were implemented on the training 

set. Root mean square error of the cross-validation (RMSECV) was used to select the best 

optimal training model based on the different pre-processing method before subjecting the 

models to the prediction or test set. Then prediction’s coefficient of determination (R2p) 

and root mean square error of prediction (RMSEP) was used to evaluate the overall 

performance of the models. In this study, the development of the models involved the use 

of the spectra in the data matrix (X) as explanatory variables to estimate or predict the 

different or contamination levels in CF given in the dependent variables column vector (Y). 

The number of latent variables was chosen in this study as 20 based on the lowest 

RMSECV (Rady & Adedeji, 2020). 

3.3   Results and Discussion 

3.3.1 Spectra characteristics of the flour samples 

Visual inspection of the mean ATR-FTIR spectra obtained for the pure samples 

(Figure 3.1) shows a similar spectrum pattern for each of the individual samples which 

signifies similarity in chemical compositions. However, on closer inspection, differences 
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between the non-gluten CF and gluten-rich flours (BF, WF, and RF) can be seen at the 

absorbance peak of 1707 cm-1 within the region between 1860 cm-1  – 1480 cm-1, including 

most of the amide I  (1690 cm-1 – 1600 cm-1), and amide II (1580 cm-1 – 1480 cm-1) 

characteristic bands that are susceptible to the protein’s secondary structure content. The 

peak distinctively differentiates both types of flours and can be used as a basis for 

discrimination of the flours (Czaja et al., 2016b). Figure 3.2(a), (b) and (c) indicate that the 

proportions of the CF contamination from 0.5% to 10% each of the spectra has similarities 

in peak, trend, and trough with different intensities. These differences and peak variations 

can be used for pattern recognition in classification model developments. 
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Figure 3.1: The mean spectra of the different pure flour samples. 
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Figure 3.2: (a) Raw spectra of corn flour (CF) contaminated with barley flour (BF), (b) 

Raw spectra of corn flour (CF) contaminated with wheat flour (WF), and (c) Raw spectra 

of corn flour (CF) contaminated with rye flour (RF). The different contamination levels of 

0.5% - 10% at 0.5% increment is represented by the different colored spectrum. 

 

 

 

(a) (b) 

(c) 
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3.3.2 Spectra preprocessing and spectra models 

Several preprocessing methods were examined for comparison purposes. Figure 3.3 

shows how some of the corresponding spectra data were transformed by the pre-processing 

algorithms. The details of pre-processing methods used for the spectra treatment and other 

statistical parameters of the LDA and PLSR models are presented in Tables 3.4, 3.5, 3.6, 

and 3.7 below. Savitzky-Golay (SG) was selected for the classification models as it has the 

best performing test confusion matrix evaluation parameters (F1-score ranging from 0.949 

to 1.0 in Table 3.4). Futhermore, as indicated in the results obtained for the regression 

models evaluation, the performances of most of the pre-processing methods were good and 

have a less significant difference from each other, but for this study, mean centering, 

smoothing (second derivative) and robust auto-scaling was selected as the best based on 

their R2p (0.96, 0.94, 0.98 respectively)  and RMSEP (0.82, 0.99, 0.53 respectively) for all 

of the developed models (Zhao et al., 2019).  
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Figure 3.3: (a) Spectra pre-processed by smoothing (1st derivatives) (b) Spectra pre-

processed by standard normal variate (SNV) and (c) Spectra pre-processed by 

multiplicative scatter correction (MSC). 
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(c) 
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3.3.3 Classification modeling results 

The LDA models’ performance was determined based on the result of the confusion 

matrix obtained for both the training and test data. The aim was to classify the spectra to 

two different groups made up of four different model classes: gluten-rich (BF (class 1), 

WF (class 2), RF (class 3) and non-gluten (CF (class 4)) flours. Tables 3.1 to Table 3.4 

summarized how successful the classification models are at predicting the spectrum 

belonging to the various classes. The results of the confusion matrices are presented in 

Table 3.1 and Table 3.3 for each of the classes in training and test models.  For example, 

in Table 3.3, out of 40 samples that are are not contaminated in class 4 (pure CF samples) 

for the test samples, the model correctly classified all the samples that truly belong to the 

class indicating a 100% classification capacity. Also, class 4 in Table 3.4 shows that the 

model has a TPR of 1 with an F1-score value of 1 which indicates a measure of 100% 

accuracy. However, in real-world situation 100% accuracy might be hard to achieved due 

to certain limitations such as real-world data complexity, missing features, unbalance data, 

etc. The higher the F1 score the better the model and value near 1 indicates a reliable and 

good model while value closer to zero may indicate a poor model. The models have a TPR 

ranging from 0.951 to 1 and an F1-score ranging from 0.949 to 1. This shows that ATR-

FTIR with LDA has the potential to detect the cross-contact of CF with BF, WF or RF 

within the contamination levels. 
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Table 3.1: Training model confusion matrix for the LDA + 4-fold Cross-validation + 

Bagging 

 Actual Class 

 Class 1 Class 2 Class 3 Class 4 

Classified as Class 1 40 0 0 0 

Classified as Class 2 0 39 1 0 

Classified as Class 3 0 1 39 0 

Classified as Class 4 0 0 0 40 

Classified as Unassigned 0 0 0 0 

Class 1: CF contaminated with BF, Class 2: CF contaminated with WF, Class 3: CF contaminated with RF and Class 4: Pure CF (BF: 

Barley Flour, WF: Wheat Flour, RF: Rye Flour, CF: Corn Flour), LDA: Linear discriminant analysis. 

 

 

Table 3.2: LDA training model confusion matrix parameters for classification of 

contamination between gluten-rich (BF (class 1), WF (class 2), RF (class 3)) and gluten-

free (CF (class 4)) flours. 

BF: Barley flour, CF: Corn flour, WF: wheat flour, RF: Rye flour, TPR: True positive rate, FPR: False positive rate, TNR: True negative 

rate, FNR: False negative rate, Err: Error, P: Precision, F1: scores for a measure of accuracy, LDA: Linear discriminant analysis. 

 

 

 

 

Class TPR FPR TNR FNR Err P F1_score 

Class 1 1.000 0.000 1.000 0.000 0.000 1.000 1.000 

Class 2 0.975 0.008 0.992 0.025 0.013 0.975 0.975 

Class 3 0.975 0.008 0.992 0.025 0.013 0.975 0.975 

Class 4 1.000 0.000 1.000 0.000 0.000 1.000 1.000 
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Table 3.3: Test model confusion matrix for LDA + 4-fold CV+ Bagging 

 Actual Class 

 Class 1 Class 2 Class 3 Class 4 

Classified as Class 1 39 2 0 0 

Classified as Class 2 0 37 1 0 

Classified as Class 3 1 1 39 0 

Classified as Class 4 0 0 0 40 

Classified as Unassigned 0 0 0 0 

Class 1: CF contaminated with BF, Class2: CF contaminated with WF, Class 3: CF contaminated with RF and Class 4: Pure CF (BF: 

Barley Flour, WF: Wheat Flour, RF: Rye Flour, CF: Corn Flour), LDA: Linear discriminant analysis. 

 

Table 3.4: Results for the evaluation of the each of the LDA test model classes (gluten-

rich: BF (class 1), WF (class2), RF (class 3)) and gluten-free (CF (class 4)) flours). 

BF: Barley flour, CF: Corn flour, WF: wheat flour, RF: Rye flour, TPR: True positive rate, FPR: False positive rate, TNR: True negative 

rate, FNR: False negative rate, Err: Error, P: Precision, F1: scores for a measure of accuracy, LDA: Linear discriminant analysis. 

 

 

 

 

 

Class TPR FPR TNR FNR Err P F1_score 

Class 1 0.951 0.008 0.992 0.049 0.019 0.975 0.963 

Class 2 0.974 0.025 0.975 0.026 0.025 0.925 0.949 

Class 3 0.951 0.008 0.992 0.049 0.019 0.975 0.963 

Class 4 1.000 0.000 1.000 0.000 0.000 1.000 1.000 
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3.3.4 PLSR prediction model 

The coefficient of determination (R2) and RMSE was used to evaluate the 

performance of each of the PLSR models based on different pre-processing methods. The 

results obtained are presented in Table 3.5, Table 3.6, and Table 3.7 for each of the 

contaminants BF, WF, and RF respectively. For CF contaminated with WF, PLSR with 

MC was chosen as the best model with R2cv, RMSECV, and R2p, RMSEP to be 0.98, 0.37 

and 0.96, 0.82 respectively. For CF contaminated with BF, PLSR with smoothing (second 

derivative) was chosen as the best model with R2cv, RMSECV, and R2p, RMSEP, to be 

0.97, 0.53, and 0.94, 0.99 respectively while for CF contaminated with RF, PLSR with 

robust auto-scaling was chosen as the best model with R2cv, RMSECV, and R2p, RMSEP 

to be 0.99, 0.37 and 0.98, 0.53 respectively. Su and Sun (2017) reported that generally, it 

is best to obtain RMSEs near 0 and R2 approaching 1, where R2 greater than 0.90 indicates 

exceptional performance and lower than 0.82 might indicate low performance of the model. 

Also, the similarity between the different model performances could indicate the 

consistency and effectiveness of PLSR. Therefore, it can be concluded that the prediction 

models are good and adequate to correctly predict the percentage (%) of contamination of 

the gluten-rich flours (BF, WF, and RF) in the non-gluten flour (CF). 

Furthermore, all the results obtained demonstrate that the application of the method 

proposed in this study to be feasible on the real-time application and can be deployed to be 

used alongside compact and portable FTIR systems such as the Agilent 4100 ExoScan 

FTIR with diamond ATR head in other to make an informed decision. However, the study 
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was developed in non-real-time or non-on-line computing environment. For such models 

to be deployed to an on-line or real-time environment, it requires the development of a 

software system that will be able to integrate the models while meeting the needs to 

produce high-quality processes in time-sensitive situations. Therefore, future studies will 

explore the use of handheld FTIR devices and carry-out more research on the best methods 

of deploying the ML models into a software system for authentication of cross-contact of 

gluten-rich and non-gluten flours.  

Table 3.5: PLSR model results for corn flour contaminated with wheat flour samples using 

different pre-processing methods. 

Pre-processing method No. of LV Cross-validation  Prediction 

  R2
cv RMSECV   R2

p RMSEP  

Non 20 0.98 0.37   0.96 0.82  

Mean Centering 20 0.98 0.37   0.96 0.82  

Scaling 20 0.98 0.41   0.94 1.01  

Auto Scaling 20 0.98 0.41   0.94 1.01  

Robust Auto-Scaling 20 0.98 0.41   0.94 1.01  

Double Centering 20 0.98 0.37   0.96 0.82  

SNV 20 0.96 0.60   0.86 1.58  

Smoothing using Savitzky-Golay 20 0.98 0.42   0.95 0.94  

Smoothing 1st Derivative 20 0.98 0.44   0.95 0.98  

Smoothing 2nd Derivative 20 0.98 0.46   0.92 1.14  

MSC 20 0.94 0.78   0.51 4.49  

LV: Latent variables, R2cv: Cross-validation’s coefficient of determination, RMSECV: Root mean square error of cross-validation, R2p: 

Prediction’s coefficient of determination, RMSEP: Root mean square error of prediction, MSC: Multiplicative scatter correction, SNV: 

Standard normal variate.  
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Table 3.6: Results of PLSR models for corn flour contaminated with barley flour samples 

using different pre-processing methods. 

Pre-processing method No. of LV Cross-validation    Prediction 

  R2
cv RMSECV   R2

p RMSEP 

Non 20 0.96 0.58   0.92 1.27 

Mean Centering 20 0.96 0.58   0.92 1.27 

Scaling 20 0.96 0.64   0.87 1.53 

Auto Scaling 20 0.96 0.64   0.87 1.53 

Robust Auto-Scaling 20 0.96 0.65   0.87 1.56 

Double Centering 20 0.96 0.58   0.92 1.27 

SNV 20 0.90 1.00   0.85 1.87 

Smoothing using Savitzky-Golay 20 0.96 0.62   0.91 1.29 

Smoothing 1st Derivative 20 0.98 0.46   0.94 1.01 

Smoothing 2nd Derivative 20 0.97 0.53   0.94 0.99 

MSC 20 0.87 1.09   0.69 3.10 

LV: Latent variables, R2cv: Cross-validation’s coefficient of determination, RMSECV: Root mean square error of cross-validation, 

R2p: Prediction’s coefficient of determination,  RMSEP: Root mean square error of prediction, RPDP: Ratio between performance to 

deviation of prediction, MSC: Multiplicative scatter correction, SNV: Standard normal variate.  
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Table 3.7: PLSR model results after different pre-processing methods for corn flour 

contaminated with rye flour. 

Pre-processing method No. of LV Cross-validation  Prediction 

  R2
cv RMSECV   R2

p RMSEP  

Non 20 0.99 0.31   0.98 0.62  

Mean Centering 20 0.99 0.31   0.98 0.62  

Scaling 20 0.99 0.37   0.98 0.54  

Auto Scaling 20 0.99 0.37   0.98 0.54  

Robust Auto-Scaling 20 0.99 0.37   0.98 0.53  

Double Centering 20 0.99 0.31   0.98 0.62  

SNV 20 0.98 0.40   0.97 0.73  

Smoothing using Savitzky-Golay 20 0.99 0.32   0.98 0.63  

Smoothing 1st Derivative 20 0.99 0.24   0.97 0.70  

Smoothing 2nd Derivative 20 1.00 0.18   0.97 0.67  

MSC 20 0.98 0.47   0.89 1.32  

LV: Latent variables, R2cv: Cross-validation’s coefficient of determination, RMSECV: Root mean square error of cross-validation, 

R2p: Prediction’s coefficient of determination RMSEP: Root mean square error of prediction, MSC: Multiplicative scatter correction, 

SNV: Standard normal variate.  
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Conclusion 

The present study indicated the feasibility of using Fourier transformed infrared 

(FTIR) spectroscopy coupled with machine learning methods to detect and quantify the 

cross-contact of gluten-rich and gluten-free flours. Linear discriminant analysis (LDA) 

showed strong potential for detecting the defined contamination levels (0% - 10% at 0.5% 

increment) of WF, BF, and RF in CF. The best model for the predictive analyses emerged 

by PLSR with MC, smoothing (second derivatives), and robust auto-scaling methods 

respectively for CF contaminated with WF, BF and RF. The proposed methods are simple, 

rapid and have high efficiency. The results obtained show that they could have great 

potentials in the food industry to compliment or add to the analytical methods used for 

detection and quantification of gluten cross-contamination in grain-based foods thus 

reducing the test time drastically.  
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CONNECTING STATEMENT 

After the completion of the first phase of the research work, the samples of the non-gluten 

flour (corn flour) contaminated with wheat flour were used bake bread. The samples were 

baked into bread with different contamination levels. The general purpose of this phase of 

this of the research is to visualize the effect of the baking process and also, to use improved 

machine learning techniques coupled with FTIR that can be used to authenticate cross-

contamination from wheat flour in a non-gluten bread. The results are presented in the next 

chapter below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

60 

 

 

CHAPTER 4.  FOURIER TRANSFORM INFRARED (FTIR) SPECTROSCOPY WITH MACHINE 

LEARNING APPROACHES FOR DETECTION AND QUANTIFICATION OF WHEAT FLOUR 

CONTAMINATION IN A NON-GLUTEN BREAD 

Abstract 

This study evaluates the use of the Fourier transform infrared (FTIR) method coupled with 

machine learning (ML) approaches to detect and quantify wheat flour contamination in a 

non-gluten bread. Samples of corn-flour (CF) were contaminated with wheat flour (WF) in 

the range of 0% - 10% with a 0.5% increment. The flour samples were baked into loaves 

of bread using basic bread ingredients and then ground into finer particles in other to 

achieve a homogenous mixture. Spectra data of the ground samples were obtained using 

FTIR and then standardized before the modeling process. For the classification model, 

majority voting-based ensemble learning (stack of k-nearest neighbor (KNN), random 

forest, and support vector classifier) was developed to detect WF contamination in the 

samples. To quantify the percentage (%) level of wheat contamination in these samples, 

KNN regressor was selected as the best predictive model. From the confusion matrix 

parameters for the test classification models, F1_score, true-positive rate (TPR), false-

negative rate (FNR) were obtained to be 1.0, 1.0, and 0.0, respectively. And for the 

quantification models, coefficient of determination (R2
T) and root mean square error 

(RMSET) for the training set were obtained to be 0.9820 and 0.4062 respectively, and for 

the test or prediction (R2
P and RMSEP) set to be 0.9871 and 0.3374 respectively. The 

F1_score, TPR, FNR, R2
T, and RMSET, R2

P and RMSEP obtained show that application of 



www.manaraa.com

61 

 

 

FTIR with the supervised machine learning approaches has an effective capacity to 

efficiently detect and quantify the defined WF contamination in the corn-bread.  

 

Keywords – Celiac Disease, Corn-bread, Ensemble learning, Gluten, Machine learning, 

Wheat flour, FTIR 
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4.1 Introduction 

Gluten proteins in wheat (gliadin and glutenin) may induce different types of 

immunological or physiological issues, for example, celiac disease, wheat allergy, gluten 

intolerance or sensitivity, and others with a wide range of side effects or symptoms in 

susceptible people. For the gluten-related disorders, a strict diet containing no gluten 

(gluten-free diet) is essential to properly manage them. A gluten-free diet is recommended 

by the United States Food and Drug Administration (FDA) to be any food containing ≤ 20 

ppm of gluten (Allred & Ritter, 2010). However, many factors can lead to gluten-free food 

to be contaminated and exceed the recommended level of 20 ppm. For example, during 

food processing, food naturally free-from gluten or non-gluten food may contain gluten 

due to cross-contact with gluten-rich grains including wheat, barley, rye, and their 

crossbred varieties. In the process of bread baking different flours from these grains, most 

especially wheat, are used because of their gluten contents that give the bread that stretchy, 

almost bouncy texture and a little bit of chew. And to make gluten-free bread involves 

using flours from non-gluten grains such as millet, corn, rice, chia, potato, almond, 

buckwheat, quinoa, and others. Most times the same equipment or kitchen is used during 

this process and thus, gluten-free bread may end up being contaminated with gluten-rich 

flour such as wheat if proper cleaning is not done or care is not taken due to human factors. 

Therefore, there is a need to ensure that bread labeled gluten-free is safe for consumption 

for people having gluten-related disorders.  

Enzyme-linked immunosorbent assay (ELISA) is the endorsed method of testing 

for gluten-free bread. However, it is a cumbersome method and requires a highly skilled 
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chemist to be executed. Considering the demand to ensure the food safety of baked foods, 

it is progressively important to develop a fast and similarly dependable technique that can 

be used to accomplish food inspection and quality control. Several applications of different 

rapid methods, for example, Fourier-transform near-infrared (FT-NIR) in comparison to 

NIR spectroscopy instrumentation was proven to have effective and reliable performance 

in predicting grain and different wheat flours quality attributes (Armstrong et al., 2006). In 

another study, FTIR spectrometer was reported as a significant and viable alternative 

method for milk quality analysis to that of a commercial IR milk analyzer (filter-based, 

multi-spec MK1) (Van De Voort et al., 1992b). Also, attenuated total reflectance FTIR 

coupled with ML supervised learning methods including partial least-squares regression 

(PLSR) and principal component analysis (PCA) has indicated potential in determining the 

sugar content in honey for quality assessment. First-derivative spectra pre-processed with 

multiplicative scatter correction and straight-line subtraction yielded the best calibration 

results with R2 ranging from 0.757 to 0.923 against the result for the test set validation (R2 

= 0.6046 to 0.8903) (Anjos et al., 2015). Furthermore, quantification of free fatty acid 

contents in palm olein as a means to take out the utilization and removal of hazardous 

solvents required by the chemical method has been established using FTIR with PLS 

models (R2 = 0.997) (Man & Setiowaty, 1999). In addition, FTIR offers many possibilities 

to be used as a potential means of identifying adulterated foods, Lohumi et al. (2014), 

reported that FTIR and FT-NIR  spectroscopy with PLSR approach can rapidly detect and 

quantify onion powder adulterated with cornstarch. Adulteration of cod-liver oil (Rohman 

& Che Man, 2009), pork in beef meatball (Rohman et al., 2011), lard content in cake 
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formulation (Syahariza et al., 2005), lotus root powder with potato starch (Liu et al., 2013), 

sugar cane ((Irudayaraj et al., 2003) and inverted beet sugar (Sivakesava & Irudayaraj, 

2001) in honey have been authenticated using FTIR in combination with different learning 

algorithms.  

In this study, FTIR spectroscopy combined with supervised machine learning 

approaches was used to detect and quantify wheat flour contamination in non-gluten bread. 

More sophisticated machine learning algorithms were explored and compared for effective 

analysis. 

4.2  Materials and methods 

4.2.1 Basic ingredients for bread 

The corn-flour (CF) and wheat flour used were purchased from Bob’s Red Mill 

Natural Foods (US food company). During the mixing process, the following basic bread 

ingredient formulation adopted from (Mondal & Datta, 2008) was used. The corn-bread 

formulation includes corn-flour (100%) and other ingredients based on the weight of the 

flour with the following percentages: water (70%), dried yeast (2%), salt (2%), sugar (2%), 

vegetable fat (3%) and 0 – 10% of wheat flour at 0.5% increment for the contamination 

levels. 
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4.2.2 Laboratory baking  

The corn-flour was mixed with the aforementioned formulated ingredients at the 

different wheat flour contamination levels. The bread dough was mixed using a kitchen 

mixer (KitchenAid, Model KV25G0X, Benton Harbor, MI) with a variable speed ranging 

from 1 (60 rpm) to 10 (280 rpm). All the ingredients were mixed for 1 min at speed 1 (60 

rpm) and a total 6 min at speed 2 (95 rpm). The process also involved scrapping the dough 

every 2 min while mixing. The dough was poured into aluminum baking pans and proofed 

for 35 min at 40°C and subsequently baked for 1 hr at 190.6°C in an oven (Hobart, HR202, 

OH, U.S.A). The baked loaves of bread were kept for 1 hr at room temperature (24°C) to 

cool and then blended to finer particles (for homogenous mixture) using a commercial 

laboratory blender (Waring Commercial 7010BU Lab Blender) for 40 seconds before 

measurements. In the end, 21 different bread samples (20 g each) were obtained. 

4.2.3 Spectra Data and pre-processing 

Spectra measurements were carried out on the ground bread samples using 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrometer (Nicolet 

iS 50 Massachusetts, USA) in the frequency range of 4000 - 450 cm−1 with a resolution of 

4 cm−1 and a total accumulation of 32 scans. The data obtained were then pre-processed 

using standard scaling (SC) method or standardization. The SC is obtained by subtracting 

the mean of the feature vectors (𝜇) from every data point (X) and then divides each column 

by the corresponding element in the vector’s standard deviation (𝜎). Generally, standard 
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scaling makes the data increasingly interpretable, because the normal estimation of Y when 

𝑥 (the mean or centered X) is zero represents the expected value of Y when X is at its mean 

with a standard deviation of 1. This transforms the data to have a resulting distribution of 

a mean of 0 and a standard deviation of 1. 

 

𝑥𝑖𝑗 =
(𝑋𝑖𝑗− 𝜇𝑖𝑗)

𝜎𝑖𝑗
         (4.1) 

In the process of developing the models, the data were split into a training set (70%) and 

test set (30%) 

4.2.4 Models development 

All models were developed using scikit learn 0.22.2 (machine learning in python). A robust 

library that provides a range of python-based supervised and unsupervised machine 

algorithms with the capability to deploy machine learning models from prototypes to a  

production system. It is also a free-open-source software with very huge support from the 

technology community and commonly used in the industry when compared to MATLAB.  

4.2.4.1 Feature reduction 

Spectra data obtained from the ATR-FTIR is a high dimensional feature data with 

a lot of redundant features. Due to the problem of overfitting the model, the data features 

were reduced using the method of principal component analysis (PCA). PCA method 

reconstructs features of a dataset into a new set of uncorrelated features called principal 

https://scikit-learn.org/stable/
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components (PCs). The number of PCs is then selected based on the desired maximum 

amount of variance explained (Howley et al., 2005). 

4.2.4.2 Classification model 

To detect whether a bread sample is contaminated with wheat flour during the 

baking process, a classification model was developed by training different individual 

classifiers and using an ensemble learning technique or method. The ensemble learning 

method involves combining different learning algorithms to obtain a high-accuracy meta-

model, and experimental evidence indicates this method to be often much more accurate 

than using a single learning algorithm (Dietterich, 2002). In this study, a voting-based 

ensemble learning was used. The method stacks different supervised machine learning 

classification algorithms including a random-forest (RF) classifier, support vector machine 

(SVM) classifier, and k-nearest neighbor (KNN) classifier. Each base model was trained 

using 70% of the dataset and then made a classification (vote) on the test (30% of the 

dataset) instances. The final output was the one that received more than half of the votes 

(majority voting). This was similar to the method used by Bouziane et al. (2011) to predict 

protein secondary structure which yielded more significant performance over the use of the 

best individual classifier. The model was evaluated based on the confusion matrix 

parameters obtained with emphasis on the false-negative rate (FNR), true positive rate 

(TPR), and the F1_score. Defined as: 

 

𝑇𝑃𝑅 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                    (4.2) 
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𝐹𝑁𝑅 =  
𝐹𝑁

(𝐹𝑁+𝑇𝑃)
                                   (4.3) 

F1_score = 2
 𝑃𝑅

𝑃+𝑅
                                    (4.4) 

 

Where: TP = true positive, FN = false positive, P = precision, and R = recall         

4.2.4.3 Prediction model 

The prediction model was based on developing several individual regression 

models, ensemble learning, and then selecting the best performing model just as in section 

2.4.2. Supervised machine learning regression models including k-nearest neighbors 

(KNN) regressor, random forest (RF) regressor, decision tree (Dct) regressor, SVM 

regressor, and partial least square regressor (PLSR) were used for this purpose. The 

coefficient of determination and root mean square error of the training set (R2
T, RMSET), 

and for the test or prediction set (R2
P, RMSEP) was used to evaluate the performance of 

the models. Thus, the best model is characterized by higher R2
T and R2

P, and the lower root 

means square error RMSET and RMSEP. To improve each of the individual models, cross-

validation was used to tune and determine the value of the model’s hyper-parameter 

selected and their learning curve was obtained. This is to ensure that the model is not 

underfitting or overfitting the data in any way.  
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4.3 Results and Discussion 

4.3.1 Spectra characteristics of the ground bread samples 

Figure 4.1 and Figure 4.2 provide visualizes of the FTIR-spectra formation of the 

sample contaminated with 0.5% wheat flour when it is in raw form (flour) and after being 

processed (bread). Comparing these two Figures (4.1 and 4.2) at the region between 1860 

cm-1  – 1480 cm-1, which includes most of the amide I  (1690 cm-1 – 1600 cm-1), and amide 

II (1580 cm-1 – 1480 cm-1) characteristic bands that are susceptible or sensitive to the 

secondary structure content of proteins. This region maintains a smooth formation with 

unique peaks due to CO and NH or other potential (CC and CN)  stretching vibrations in 

Figure 4.1 (Jabs, 2005). However, in Figure 4.2 we could see some form of noisy 

deformation within the region and this may be due to protein denaturation during the 

heating process and other conversion processes such as mixing with other ingredients (e.g. 

salt) (Neill et al., 2012). Other differences could be seen in the intensities of the peak and 

trough. Therefore, this shows that the unnatural processes can cause changes in the 

formation of FTIR-spectra of a sample containing protein. 
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Figure 4.1: Raw sample of FTIR-spectra of the corn-flour contaminated with 0.5% wheat 

flour   
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Figure 4.2: Baked sample of FTIR-spectra after the corn-bread contaminated with 0.5% 

wheat flour  
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4.3.2 Classification modeling results 

Running the PCA reduced the number of features to 20 principal components (PCs), 

which explained about 100% of the variance in the data samples (Figure 4.3). The 20 PCs 

were utilized to develop the classification models based on two classes: class1 (No. 

Contamination) and class 2 (Contamination with Wheat). Among all the classifier methods 

used including RF classifier, SVM classifier, KNN classifier, and majority voting-based 

ensemble learning by stacking the individual learning algorithms, the ensemble method 

gave the best result based on the confusion matrix parameters obtained. Table 4.1 and Table 

4.2 presents the confusion matrix and its parameters obtained during the training of the 

train set (70% of the dataset). The false-negative rate (0), true-positive rate (1.0), and F1-

score (1.0) values obtained indicate a 100% rate performance of the model at all times. 

Table 4.3 and Table 4.4 present the confusion matrix parameters obtained after the model 

was subjected to a new test data (30% of the dataset). The model was able to accurately 

classify all samples belonging to each of the class with a TPR, FNR, and F1-score of 1.0, 

0, and 1.0 respectively. This shows the ability of the ensembled classifiers to learn every 

feature in the binary classes of the samples used, also when subjected to the test sets the 

performance was reliable and consistent. This might not be the case in a real-life 

application (100% accuracy) due to the complexity of real-world data which always 

involves limitations such as missing data, unbalanced data, redundant variables, etc. But it 

justifies that the ensemble learning method is very efficient and has the great potential to 



www.manaraa.com

73 

 

 

learn most features in classes towards the detection or classification of the wheat 

contamination levels in the cornbread used. 

 

 

 

Figure 4.3: Plot of number of principal components (PCs) and variance explained in the 

samples. 
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Table 4.1: Confusion matrix parameters for the majority voting-based learning 

classification training model (Class 1: No Contamination, Class2: Contaminated with 

Wheat) 

TPR: True positive rate, FPR: False positive rate, TNR: True negative rate, FNR: False-negative rate, Err: Error, P: Precision, F1: scores 

for a measure of accuracy. 

 

Table 4.2: Confusion matrix table for the majority voting-based ensemble learning 

classification training model 

Actual Class 

 Class 1 Class 2 

Classified as Class 1 138 0 

Classified as Class 2 0 142 

Classified as Unassigned 0 0 

Class 1: No Contamination, Class2: Contaminated with Wheat 

 

Table 4.3: Confusion matrix parameters for the classification test model (Class 1: No 

Contamination, Class2: Contaminated with Wheat) 

TPR: True positive rate, FPR: False positive rate, TNR: True negative rate, FNR: False-negative rate, Err: Error, P: Precision, F1: scores 

for a measure of accuracy. 

 

Class TPR FPR TNR FNR Err P F1_score 

Class 1 1.0 0.0 1.0 0.0 0.0 1.0 1.0 

Class 2 1.0 0.0 1.0 0.0 0.0 1.0 1.0 

Class TPR FPR TNR FNR Err P F1_score 

Class 1 1.0 0.0 1.0 0.0 0.0 1.0 1.0 

Class 2 1.0 0.0 1.0 0.0 0.0 1.0 1.0 
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Table 4.4: Confusion matrix table for the majority voting-based ensemble learning 

classification test model 

Actual Class 

 Class 1 Class 2 

Classified as Class 1 62 0 

Classified as Class 2 0 58 

Classified as Unassigned 0 0 

Class 1: No Contamination, Class2: Contaminated with Wheat 

4.3.3 Prediction model 

Table 4.5 presents the evaluation parameters for the predictive learning algorithm used 

including RF regressor, KNN regressor, Decision trees, SVM regressor, PLSR, and 

ensemble learning. The results for KNN and PLSR are very close in performance with an 

R2
T = 0.9820 (KNN), 0.9903 (PLSR), R2

P = 0.9871 (KNN), 0.9694 (PLSR) and RMSET = 

0.4062 (KNN), 0.0790 (PLSR), and RMSEP = 0.3314 (KNN), 05192 (PLSR), respectively, 

which indicates that both learning algorithms have the potential to quantify the level of the 

wheat flour contaminant in the bread samples within the percentage levels used. Based on 

the values of R2
P (0.9871) and RMSEP (0.3314) for KNN, it was selected as the best 

performing learning algorithm. Figure 4.4 to 4.8 shows the learning curves obtained as a 
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function of the number of the hyper-parameter tuned for each of the individual algorithms. 

 

Figure 4.4: Validation curve for decision tree regressor. 

 

Figure 4.5: Validation curve for K-Nearest Neighbors regressor 
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Figure 4.6: Validation curve for partial least square regression (PLSR) 

 

 

Figure 4.7: Validation curve for random forest regressor. 
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Figure 4.8: Validation curve for support vector machine 

 

This was to choose a hyper-parameter that will strike balance between the bias and 

variance in other to prevent overfitting. As seen in Figure 4.5 for the best learning algorithm 

(KNN), the learning gap between the scores measured on the training and cross-validation 

set is very minimal and insignificant. It was observed that as we increase the number of 

neighbors for the algorithm the changes remain constant until approaching the value of 6 

where the scores started dropping leading to lower accuracy of the model. Therefore, we 

can conclude from this that the number of neighbors ranging from 1 to 5 to be more 

effective for the KNN model to predict or quantify the percentage contamination of the 

wheat flour in the corn-bread. 
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Table 4.5: Prediction analysis on a different learning algorithm 

Learning 

Algorithm 

Hyper-parameter Training  Prediction 

  R2
T RMSET  R2

P RMSEP 

Random Forest (rf) n_estimators = 991 1.0 0.0  0.5159 2.0643 

       

K-Nearest 

Neighbors (knn) 

n_neighbors = 4, 

metric = 'manhattan' 

0.9820 0.4062  0.9871 0.3374 

       

Decision Tree (dct) max_depth = 6 0.9910 0.2874  0.5745 1.9354 

       

Support Vector 

Machine (svr) 

gamma = 0.03 0.8960 0.9767  0.7548 1.4692 

Partial Least 

Square Regression 

(plsr) 

n_components = 30 0.9993 0.0790  0.9694 0.5192 

       

Ensemble Method 

(voting) 

(rf, knn, dct, svr, 

weight = none) 

0.9903 1.2899  0.8110 1.2899 

 

Conclusion 

FTIR spectroscopy has always played an important role in the food industry with 

regards to food safety inspection and quality assessment. In this study, we used FTIR 

spectroscopy coupled with supervised machine learning (ML) approaches to detect and 

quantify wheat flour (WF) contamination in the range of 0% - 10% at 0.5% increment in 

non-gluten bread (corn-bread It was observed that the use of ensemble learning method 

performed better than using individual supervised ML algorithms in detecting the 

cornbread samples contaminated with WF. The KNN regressor emerged the most 

promising technique in quantifying the percentage level of the WF contamination with the 

best prediction’s coefficient of determination of 0.9871 and prediction’s root mean squared 



www.manaraa.com

80 

 

 

error of 0.337. Therefore, the results obtained from this study indicate the potential and the 

effectiveness of using an FTIR spectrometer with ML techniques in the authentication of 

WF contamination in a non-gluten bread. 
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CONNECTING STATEMENT 

After the development of the ML models that can detect and quantify the wheat 

contamination levels in the raw flour samples and processed food (bread). This part of the 

study was carried out to estimate the amount of gluten present in the contamination levels. 

In the next chapter, Enzyme-linked immunosorbent assay (ELISA), an approved method 

by the United States Food and drug administration was used to authenticate gluten in the 

samples. Therefore, this method was used to complement the quantification models 

obtained in chapter 3 and 4 above to establish a threshold limit at which we can label the 

contamination level of our samples to be gluten-free. Furthermore, for the raw flour 

samples (chapter 3), only the samples with wheat flour contamination were considered 

because wheat is the most commonly used flour in the food industries in making grain-

based foods.  
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CHAPTER 5. ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) TEST FOR 

QUANTIFICATION OF AMOUNT OF GLUTEN PRESENT IN THE CONTAMINATION 

LEVELS IN CHAPTER THREE AND FOUR 

5.1 Introduction 

The  United States Food and Drug Administration (FDA) specifies a regulatory 

threshold of ≤ 20 ppm of gluten for any food to be labeled “gluten-free” or “no-gluten” 

(Allred & Ritter, 2010). Also, it is generally recommended by FDA that foods containing 

any of the gluten-rich grains including wheat, barley, and rye with a contamination level 

of gluten below 20 ppm to be considered safe for consumption for most people with gluten 

related-disorders (Lacorn et al., 2017). Therefore, it is important to inspect foods labeled 

“gluten-free” or “no-gluten” and the contamination level from the gluten-rich grains to 

validates that it meets the regulatory threshold limit. In order to ensure that it is safe for 

consumption for people with gluten-related health concerns. 

In chapters 3 and 4, the percentage (%) level of contamination from the wheat flour 

(WF) in the different samples were detected and quantified using the FTIR with machine 

learning approaches. However, the amount of gluten present in these samples still needs to 

be established. Establishing the amount of the gluten in the samples will help determine 

the percentage limit of the WF contamination level at which the regulatory threshold is 

applicable. 

The use of testing kits or methods that are fully approved and certified by the 

Association of Official Analytical Chemists (AOAC International) have been suggested by 

most international organizations and regulatory agencies including FDA. Today, gluten is 
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validated in foods using Enzyme-linked immunosorbent assay (ELISA) method as it met 

all the requirements for testing and estimating the amount of gluten in food by the 

regulatory agencies. Therefore, this part of the study used the ELISA test to established 

threshold (≤ 20 ppm) of the wheat flour (WF) contamination levels in the study’s objective 

1 (chapter 3) and objective 2 (chapter 4) for gluten-free labeling. 

5.2 Materials and Methods 

5.2.1 Materials 

The samples from the part of the study in chapter three (raw samples of corn flours 

contaminated with wheat flour) and in chapter four (processed samples of cornbreads 

contaminated with wheat flour) were analyzed to quantify the amount of gluten (in ppm) 

present in each of the samples selected. RIDASCREEN® Gliadin (R7001) ELISA test kit 

(AOAC international approved) from R-Biopharm (Darmstadt, Germany) was used during 

the ELISA analysis. The detection limit of the kit is 0.5 ppm gliadin or 1ppm gluten based 

on the matrix and a quantification limit of 2.5 ppm gliadin or 5 ppm gluten. The specificity 

of the kit involves the reaction of the monoclonal antibody R5 with the gliadin-divisions 

from wheat and the corresponding prolamins from barley and rye. Table 5.1 below presents 

details of all the contents or materials provided in the kit and sufficient enough for 96 

measurements (including standard analyses). 
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Table 5.1: Content (reagents provided) of each ELISA kit 

Component  Cap color Format   Volume 

Microtiter plate  Ready to use   96 wells 

Buffer   White Concentrate 5x 60 ml 

Standard 1 Transparent Ready to use 0 ng / ml gliadin  1.3 ml 

Standard 2 Transparent Ready to use 5 ng / ml gliadin  1.3 ml 

Standard 3 Transparent Ready to use 10 ng / ml gliadin 1.3 ml 

Standard 4 Transparent Ready to use 20 ng / ml gliadin  1.3 ml 

Standard 5 Transparent Ready to use 40 ng / ml gliadin  1.3 ml 

Standard 6 Transparent Ready to use 0 ng / ml gliadin  1.3 ml 

Wash buffer  Brown Concentrate 10x 100 ml 

Conjugate Red Concentrate  1.2 ml 

Substrate Green Ready to use  7 ml 

Chromogen Blue Ready to use  7 ml 

Stop Solution Yellow Ready to use  14 ml 

Source: (R-Biopharm, 2009) 

5.2.2 Methods 

The ELISA method used follows all the laboratory protocol (R-Biopharm, 2009) provided 

in the test kit. Some of the detailed procedure from the kit instructional manual has been 

outlined below. 

Equipment 

i. Microtiter plate spectrophotometer (450 nm) 

ii. Centrifuge (Eppendorf, 5417R), centrifugal vials (Greiner centrifuge tube – 1.5 ml) 

iii. Shaker or rotator (Rocker II, model: 260350) 

iv. Laboratory mincer/grinder, ultra-turrax or homogenizer (Fisher vortex genie 2, Cat 

no. 12-812) 
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v. Water bath (50 °C / 122 °F) 

vi. Graduated pipettes (Eppendorf) 

vii. Variable 20 μl - 200 μl and 200 - 1000 μl micropipettes 

Other Reagents Needed 

i. Distilled or deionized water 

ii. Gluten-free skim milk powder (food quality) 

iii. Cocktail (patented) (R7006) and ethanol solution (80 %): i.e. add 120 ml ethanol 

p.a. to 30 ml distilled water and shake well.  

5.2.2.1 Preparation of samples and supernatant extraction 

To maintain a free contamination process, 40% ethanol or 2-propanol was used to 

clean or wiped all surfaces, vials, mincers, and other equipment. All work done was under 

a chemical hood because of ß-mercaptoethanol content in the Cocktail (patented). 

Homogenized sample (0.25 g of each) was weighed with the addition of skimmed milk 

powder (0.25 g), and Cocktail (patented) (2.5 ml). All samples were placed in a 1.5 ml vial 

and mixed well. After thorough mixing of the samples, they were incubated for 40 min at 

50°C (122°F) and cooled down before mixing it with 80 % ethanol (7.5 ml). Then, using a 

rotator, vials containing the samples were shaken for 1 hour at room temperature (25°C / 

77°F). At the end of this, the samples were centrifuged for 10 min, at 20,000 g, and room 

temperature (25°C / 77°F). The supernatants were then separated utilizing a pipette and 

extracted into a screw-top vial.  
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5.2.2.2 Test preparation and Implementation 

Preparations 

All reagents were brought to room temperature (25°C/77°F) before use. The needed 

buffer concentrate was diluted at 1:5 (1+4) with distilled water, the needed conjugate 

(bottle with red cap) concentrate was shaken carefully and then diluted at 1:11 (1+10) with 

distilled water for reconstitution. Also, the needed washing buffer concentrate was diluted 

at 1:10 (1+9) with distilled water.  

Test procedure 

All procedures provided in the instructional manual (R-Biopharm, 2009) from the kit were 

duly followed. 

i. The wells were embedded into the microwell holder for all standards and the 

samples to be run in copies while recording their positions. 

ii. Standard solution and sample of 100 μl each were added to a different copy well 

and then incubated for 30 min at room temperature (25 °C / 77 °F). 

iii. The wells were drained of all liquid and tapped upside down vigorously (three 

times) against an absorbent paper for the total expulsion of the liquid from the wells. 

After this, 250 μl diluted washing buffer was poured into each of the wells and then 

the liquid was poured out again repeatedly twice. 

iv. A diluted conjugate of 100 μl was poured into each well and incubated (30 min) at 

room temperature. 

v. Then repeat step 3 (iii) 
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vi. Substrate and chromogen of 50 μl were added to each well, mixed gently by 

manually agitating the plate and incubate in the dark for 30 mins at room 

temperature. 

vii. The stop solution (100 μl) was added to each well, mixed gently by manually 

agitating the plate. Then, the absorbances were measured at 450 nm, 30 mins after 

adding the stop solution. 

After the readings were done, all calculations were carried out in M.S Excel (V. 16.37, 

2020) using a cubic spline function. 

5.3 Results and Discussion 

The standard curve obtained from the six known standards is shown in Figure 5.1 

below with R2 of 0.9994, this was used to estimate the quantity of gluten present in the 

samples selected from the raw flour samples (in chapter three) and processed samples (in 

chapter four). The results obtained are presented in Tables 5.2 and 5.3. Some of the results 

obtained from the ELISA test were invalidated because they were out of range of the 

standard curve obtained. This might be due to some errors in sample preparation, or issues 

with equipment readings. Fortunately, this did not interfere with the main goal of running 

the test. Which is to estimate at what contaminant level (between 0.5-10% at 0.5% 

increment) is the recommended FDA’s threshold limit of 20 ppm for food to be labeled 

“gluten-free” (Lacorn et al., 2017). The result (Table 5.2) for the raw flour samples from 

chapter three indicates this to be at 0.5% (15.10 ppm) and any threshold above 20 ppm is 
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labeled “gluten-contaminated”. Therefore, from this, we can conclude that CF 

contaminated with WF at a contamination level approaching 1% and above is likely to be 

more than 20 ppm and not gluten-free. In future works, the recommendation is that this is 

extended and related to other major sources of gluten (barley flour and rye flour). For the 

processed (bread) samples contaminated with WF, the result is presented in Table 5.3 

below. The ELISA test estimation indicates that the threshold for the WF contamination 

level to be gluten-free is at 3.5% (19.84 ppm). Therefore, this concludes that cornbread 

contaminated with the WF at a contamination level below 3.5% to be less than 20 ppm and 

thus, can be labeled gluten-free. However, it can be observed that the threshold of the baked 

samples (3.5%) is higher when compared to the raw flour samples (0.5%). This could be 

due to the baking process (heating) that denatured the protein structures by forming new 

disulfide bonds and aggregation of the proteins. This makes it more difficult to extract the 

gluten proteins at a lower level. Furthermore, it might result in lower gluten protein 

solubility and lead to a lower rate of detection that will require modification of the 

extraction protocol (Hayta & Alpaslan, 2001). For this reason, the threshold of the raw 

flour samples (0.5%) is generally recommended as the contamination limit for gluten-free 

labeling. 
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Figure 5.1: ELISA standard curve 

 

 

 

 

 

 

 

 

 

 

 

y = 1E-05x3 - 0.0017x2 + 0.0988x + 0.0623

R² = 0.9994

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90

A
b
so

rb
an

ce

ppb

Standards

Standards Poly. (Standards)



www.manaraa.com

92 

 

 

 

Table 5.2: Quantification of the amount of gluten in ppm for the raw flour samples 

contaminated with WF 

WF Contaminant level (%) Gluten level (ppm) Label 

0.5 15.10 Gluten-Free 

1 24.81 Gluten-Contaminated 

1.5 45.87 Gluten-Contaminated 

2 97.33 Gluten-Contaminated 

2.5 83.79 Gluten-Contaminated 

3 108.88 Gluten-Contaminated 

3.5 *** *** 

4 *** *** 

4.5 *** *** 

5 *** *** 

5.5 *** *** 

6 *** *** 

6.5 *** *** 

7 *** *** 

7.5 *** *** 

8 *** *** 

8.5 *** *** 

9 190.18 Gluten-Contaminated 

9.5 202.83 Gluten-Contaminated 

10 217.36 Gluten-Contaminated 

*** Indicates threshold higher values than expected; preparation error, WF: wheat flour. 

 

 



www.manaraa.com

93 

 

 

Table 5.3: Quantification of the amount of gluten in ppm for the processed flour (bread) 

samples contaminated with wheat flour (WF) 

Selected WF contaminated 

bread samples level (%) 

Gluten level (ppm) Label 

0.5 3.04 Gluten-Free 

1 4.89 Gluten-Free 

1.5 10.54 Gluten-Free 

2.5 14.81 Gluten-Free 

3.5 19.84 Gluten-Free 

4.5 *** *** 

5.5 38.20 Gluten-Contaminated 

6.5 *** *** 

7.5 40.96 Gluten-Contaminated 

8.5 *** *** 

9.5 47.43 Gluten-Contaminated 

10 60.75 Gluten-Contaminated 
*** Indicates threshold higher values than expected; preparation error. 
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Conclusion 

This part of the study uses enzyme-linked immunosorbent assay (ELISA) test to 

estimate or determine the threshold (≤ 20 ppm) of the amount of gluten in the 

contamination percentage level for the samples in chapter two (corn flour (CF) samples 

contaminated with wheat flour (WF)) and chapter three (Cornbread samples contaminated 

with WF) at which they can be labeled gluten-free. The results obtained for the raw CF 

contaminated with WF show that at less than 0.5% (15.10 ppm) the samples can be marked 

as gluten-free while the threshold for gluten-free labeling for the samples of the processed 

CF (corn-bread) contaminated with WF to be at 3.5% (19.84 ppm). This process will help 

to make more informed decisions about the amount of gluten present in the detection and 

quantification of the machine-learning models. 
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CHAPTER 6.  GENERAL CONCLUSION AND RECOMMENDATION 

This thesis contains a comprehensive research work developed to use Fourier 

transformed infrared (FTIR) spectroscopy method coupled with machine learning (ML) 

approaches to detect and quantify gluten cross-contamination in grain-based foods. Gluten 

is a type of storage protein that is mainly present in wheat, rye and barley grains. Gluten 

helps food to maintain its shape by acting like a glue that binds and gives dough that 

stretchy structure during baking. Gluten poses danger to some people who are susceptible 

to gluten-related disorders such as celiac disease, wheat allergy, and gluten sensitivity 

when gluten-containing foods are consumed. This can cause many health implications and 

can be critical if not managed properly. Therefore, this thesis is sectioned into three 

different phases with specific objectives.  

Phase I in chapter 3, FTIR spectrometer with ML approaches was used to detect 

and quantify cross-contamination between a non-gluten flour (corn flour (CF)) and gluten-

rich flour (wheat (WF), barley (BF), and rye (RF)) at different contamination levels of 0-

10% with 0.5% increment. Linear discriminant analysis (LDA) with F1-scores (0.963 

(WF), 0.949 (BF), 0.963 (RF) and 1.0 (CF)) for the different classes, and partial least square 

regression (PLSR) with coefficient of determination (R2
P ) for the prediction or test set 

(0.96 (WF), 0.94 (BF), and 0.98 (RF)), and root mean square error (RMSEP) for the 

prediction or test set (0.82 (WF), 0.99 (BF), and 0.53 (RF)) emerged as the best performing 

approaches.  
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The phase II of the research in chapter 4 utilized FTIR with more advanced methods 

of ML approaches to detect and quantify cross-contamination processed food (baked) 

between a non-gluten bread (corn-bread) and wheat at the same contamination levels used 

in chapter 3. For this phase, majority voting-based ensemble learning (stack of random 

forest, k-nearest neighbor (KNN) and support vector classifier) ML approach was 

developed and evaluated for class detection or classification. The following performance 

metrics were obtained for the two classes (WF and CF) of the models: F1-score, true-

positive rate (TPR), false-negative rate (FNR) were obtained to be 1.0, 1.0, and 0.0, 

respectively. And for the quantification or regression models, K-nearest neighbor was 

selected as the best performing learning algorithm with R2
P and RMSEP set to be 0.9871 

and 0.3374 respectively.  

Chapter 5 discusses comprehensively, the Enzyme-linked immunosorbent assay 

(ELISA) analysis that was carried out to complement the quantification results obtained in 

chapter 3 and chapter 4. The ELISA test was used to establish the regulatory gluten 

threshold limit (≤ 20 ppm) for the samples of WF contamination levels in samples from 

chapter 3 (raw-flour samples) and chapter 4 (processed samples) to be labeled gluten-free. 

For the raw-flour samples of WF in chapter 3, this limit was obtained to be at ≤ 0.5% while 

for the processed samples (corn-bread) in chapter 4, it was obtained at ≤ 3.5%. Generally, 

the results obtained from the approaches used in this research indicate a great potential of 

using a non-destructive method coupled with an ML approach to authenticating the cross-

contact of gluten in grain-based foods. With further development and optimization, it could 
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be deployed as a useful intelligent analytical procedure for fast gluten determinations or 

estimation in flour and/or grain-based foods. 

 

 

Copyright © Abuchi G. Okeke 2020 
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APPENDIX 

Appendix A: MATLAB Code 

A.1 Spectra Data Analysis Code 

%Author: Abuchi Okeke 

%Last Date modified: 03/28/2020 

 

%Description: 

%Calls function that Loads the spectra data in .SPA format to Matlab format .mat 

%Splits data into sets using KernardStone algorithm 

%Initiates the PLS Toolbox by Eigenvector Research for data analysis 

 

%Prerequisite 

%Install from https://eigenvector.com/software/pls-toolbox/ 

 

%clean up 

clc; clear; close all; 

 

tic 

%1 

%Load Raw Spectral Data 

[Spectra, Wavenumbers, SpectraTitles, Filenames, ... 

    SpectraComments] = LoadSpectra (); 

 

%Read from CSV file 

%filename1 = 'classification_resampled.csv'; 

%Spectra = csvread(filename1); %reads the specified worksheet. 

 

%Spectra = Spectra'; 

ir = 10;                %number of data replication or duplicates 

[m, n] = size(Spectra); 

N = n/ir; 

 

 

%Set data splitting ratio 

cRatio=0.8;  % Eighty percent of the samples were selected as calibration set and twenty percent as prediction set 

pRatio=1 - cRatio; 
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nC = round(n*cRatio);   %column size for calibration set 

nP = round(n*pRatio);   %column size for prediction set 

calibrationSet = zeros((nC),m);  %initiate calibration set 

predictionSet = zeros(nP,m);     %initiate prediction set 

yCal = zeros((nC),1);            %initiate calibration labels 

yPred = zeros(nP,1);             %initiate prediction labels 

 

%Initiate average/mean data sets 

% meanSpectra = zeros(m,N); 

mCalibrationSet = zeros(N,m); 

mPredictionSet = zeros(N,m); 

 

%Read labels for the examples (change filename) 

filename = 'Yclassification_label.csv'; 

data = csvread(filename); %reads the specified worksheet. 

yVar = data(:,1); 

%2 

%Splits data using KennardStone Algorithm 

%Finds average Spectra Data 

 

    j = ir; 

    k = 1; 

    kC = 1; 

    kP =1; 

    jC = round(ir*cRatio); 

    jP = round(ir*pRatio); 

 

    for i = 1:N 

 

   [calibrationSet(kC:jC,:), predictionSet(kP:jP,:),yCal(kC:jC), yPred(kP:jP), ... 

       mCalibrationSet(i,:), mPredictionSet(i,:), mYCal, mYPred] = callKennardStone(Spectra(:,k:j),cRatio,yVar(k:j)); 

 

    meanSpectra(:,i) = meanSpectrum (Spectra(:,k:j));  %%call function to get spectra mean 

 

    k = k + ir; 

    j = j + ir; 

    kC = kC + round((ir*cRatio)); 

    kP = kP + round((ir*pRatio)); 

    jC = jC + round((ir*cRatio)); 

    jP = jP + round((ir*pRatio)); 

 

    end 
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 X = meanSpectra'; 

 

 %Visualize data 

    plot(Wavenumbers(:,1:N),meanSpectra);           %Visualize samples mean 

 %  plot(Wavenumbers,Spectra);                      %Visualize all samples data 

    set(gca,'xdir','reverse','fontsize', 18); 

    xlabel('Wavenumbers (cm^-1)'); 

    ylabel('Absorbance'); 

 

    %Legend for pure samples 

    legend('Barley', 'Corn', 'Rye', 'Wheat'); 

 

toc 

%3 

pls % launches analysis window with for PLS Toolbox by Eigenvector Research. 

%All data-pre-processing and analyses can be done directly in the app provided by the PLS Toolbox when launched 

 

%%%END%%% 

Published with MATLAB® R2018b 

A.2 Function for loading FTIR (.SPA) data into set of arrays in MATLAB 

function [Spectra, Wavenumbers, SpectraTitles, Filenames, ... 

    SpectraComments] = LoadSpectra () 

 

% 

% LoadSpectra.m 

% 

% Imports the absorbance data in .SPA spectrum files into a set of arrays 

% with data from the selected files stored in columns. 

% 

% Copyright Kurt Oldenburg - 06/28/16 

% 

 

[Filenames,pathname]=uigetfile({'*.spa','Thermo Spectrum (*.spa)'}, ... 

       'MultiSelect','on','Select Spectra Files...'); 

 

cd (pathname);  % Change to directory where the spectrum files are. 

 

https://www.mathworks.com/products/matlab
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if ischar(Filenames)== 1           % If only 1 file is selected, Filenames 

    NumSpectra = 1;                % is a char instead of a cell of chars, 

else                               % which messes up fopen. 

    NumSpectra =length(Filenames); 

end 

 

for i = 1:NumSpectra 

 

    DataStart=0; 

    CommentStart=0; 

 

    if NumSpectra == 1 

        fid=fopen(Filenames,'r'); 

    else 

        fid=fopen(Filenames{i},'r'); 

    end; 

 

    fseek(fid,30,'bof'); 

    SpectraTitles(i)={char(nonzeros(fread(fid,255,'uint8'))')}; 

 

    fseek(fid,564,'bof'); 

    Spectrum_Pts=fread(fid,1,'int32'); 

 

    fseek(fid,576,'bof'); 

    Max_Wavenum=fread(fid,1,'single'); 

    Min_Wavenum=fread(fid,1,'single'); 

 

    % The Wavenumber values are assumed to be linearly spaced between 

    % between the Min and Max values. The array needs to be flipped 

    % around to get the order lined up with the absorbance data. 

 

    Wavenumbers(:,i)=flipud(linspace(Min_Wavenum,... 

        Max_Wavenum,Spectrum_Pts).')'; 

 

 

    % The starting byte location of the absorbance data is stored in the 

    % header. It immediately follows a flag value of 3: 

 

    Flag=0; 

 

    fseek(fid,288,'bof'); 

 

    while Flag ~= 3 
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        Flag = fread(fid,1,'uint16'); 

    end; 

 

    DataPosition=fread(fid,1,'uint16')'; 

    fseek(fid,DataPosition,'bof'); 

 

    Spectra(:,i)=fread(fid,Spectrum_Pts,'single'); 

 

    % Same story goes for the Comments section with a flag of 4. 

    % The size of the section is the difference between the two. 

 

    Flag=0; 

 

    fseek(fid,288,'bof'); 

 

    while Flag ~= 4 

        Flag = fread(fid,1,'uint16'); 

    end 

 

    CommentPosition=fread(fid,1,'uint16')'; 

    SpectraComments(i)={char(nonzeros(fread(fid, ... 

        (DataPosition-DataPosition), 'uint8'))')}; 

 

    fclose(fid); 

 

end; 

Published with MATLAB® R2018b 

A.3 Function for splitting data using Kennard Stone algorithm 

function [calibrationSet, predictionSet, yCal, yPred, mCalibrationSet, mPredictionSet, ... 

   mYCal, mYPred] = callKennardStone (spectra,ratio,yVar) 

 

%Author: Abuchi Okeke 

%Sample spectra data 

%Date modified: 07/06/2019 

%Description: calls Kennard-Stone function for sample selection 

%Matlab format 

 

https://www.mathworks.com/products/matlab
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% %1 

% %Load Raw Spectral Data 

% [Spectra, Wavenumbers, SpectraTitles, Filenames, ... 

%     SpectraComments] = LoadSpectra (); 

 

[m, n] = size(spectra); 

 

%2 

%Perform Kennard-Stone to uniformly select samples 

k = round(n*ratio);  %number of samples to select. 

x = spectra'; %transpose data; 

selSpectra = kennardstone(x, k); 

calibrationSet = x(selSpectra,:); 

% idx = find(selSpectra == 1); 

predictionSet = x(~selSpectra,:); 

y = yVar'; 

 

yCal = y(selSpectra); 

yPred = y(~selSpectra); 

 

[mCal, nCal] = size(calibrationSet); 

mCalibrationSet = zeros(nCal,1); 

mYCal = zeros(mCal,1); 

 

[mPred, nPred] = size(predictionSet); 

mPredictionSet = zeros(nPred,1); 

mYPred = zeros(mPred,1); 

 

for i = 1:nCal 

   sumCalibrationSet= sum(calibrationSet(:,i)); 

   mCalibrationSet(i) = sumCalibrationSet/mCal; 

%    sumYCal = sum(yCal(i)); 

%    mYCal(i) = sumYCal/mCal; 

end 

 

 

for i = 1:nPred 

   sumPredictionSet= sum(predictionSet(:,i)); 

   mPredictionSet(i) = sumPredictionSet/mPred; 

%    sumYPred = sum(yPred(i)); 

%    mYPred(i) = sumYPred/mPred; 

end 
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end 

Published with MATLAB® R2018b 

A.4 Function for averaging the spectra data 

function mSpectrum = meanSpectrum (spectra) 

 

%Author: Abuchi Okeke 

%Date: 06/30/2019 

%Description: This function calculates average of spectra data 

 

[m, n] = size(spectra); 

mSpectrum = zeros(m,1); 

 

for i = 1:m 

   sumSpectra = sum(spectra(i,:)); 

   mSpectrum(i) = sumSpectra/n; 

end 

 

end 

Published with MATLAB® R2018b 

Appendix B: Python Code 

B1. Python Library 

Sci-kit Learn:  https://scikit-learn.org/stable/ 

https://www.mathworks.com/products/matlab
https://www.mathworks.com/products/matlab
https://scikit-learn.org/stable/


www.manaraa.com

106 

 

 

B.2 Classification models 

Scan the QR code below with your smart phone camera or click on the link below it to 

access the python notebook for prototyping classification models 

 

 

bit.ly/ml-classification 

 

 

B.3 Predictive/Regression models 

Scan the QR code below or click on the link below it to access the python notebook for 

prototyping the regression or predictive models. 

 

https://bit.ly/ml-classification
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bit.ly/ml-prediction 

 

 

 

 

 

 

 

 

https://bit.ly/ml-prediction
https://bit.ly/ml-prediction
https://bit.ly/ml-prediction
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